首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A study concerning membrane contact and fusion phenomena was made for phospholipid spherical bilayer systems with respect to temperature. Specific temperatures were obtained for the spherical bilayer membranes of phosphatidyl choline (PC) and phosphatidyl serine (PS) which indicated a greater degree of membrane fusion and were designated Tf (the fusion temperature -- PC: 43 degrees C, PS: 38 degrees C). These temperatures were reduced by about 10 degrees C for the membranes incorporated with 20% lysophosphatidyl choline. The results of the contact and fusion observed in the spherical membranes are compared and discussed with the conductance characteristics of the PC and PS planar bilayer membranes as well as dissolution study on the phospholipid monolayers formed at the air/water interface with respect to temperature. Also, a possible molecular mechanism of membrane fusion is discussed in terms of the fluidity and instability of the membrane.  相似文献   

4.
The effect of divalent metals on the interaction and mixing of membrane components in vesicles prepared from acidic phospholipids has been examined using freeze-fracture electron microscopy and differential scanning calorimetry. Ca2+, and to a certain extent Mg2+, induce extensive mixing of vesicle membrane components and drastic structural rearrangements to form new membranous structures. In contrast to the mixing of vesicle membrane components in the absence of Ca2+ described in the accompanying paper which occurs via diffusion of lipid molecules between vesicles, mixing of membrane components induced by Ca2+ or Mg2+ results from true fusion of entire vesicles. There appears to be a “threshold” concentration at which Ca2+ and Mg2+ become effective in inducing vesicle fusion and the threshold concentration varies for different acidic phospholipid species. Different phospholipids also vary markedly in their relative responsiveness to Ca2+ and Mg2+, with certain phospholipids being much more susceptible to fusion by Ca2+ than Mg2+. Vesicle fusion induced by divalent cations also requires that the lipids of the interacting membranes be in a “fluid” state (T > Tc). Fusion of vesicle membranes by Ca2+ and Mg2+ does not appear to be due to simple electrostatic charge neutralization. Rather the action of these cations in inducing fusion is related to their ability to induce isothermal phase transitions and phase separations in phospholipid membranes. It is suggested that under these conditions membranes become transiently susceptible to fusion as a result of changes in molecular packing and creation of new phase boundaries induced by Ca2+ (or Mg2+).  相似文献   

5.
An extension of a previous treatment (Cohen, J. A., and M. Cohen, 1981, Biophys. J., 36:623-651) is presented for the adsorption of monovalent and divalent cations by single-component phospholipid membranes, where monovalent cations adsorb with a cation/phospholipid stoichiometry of 1:1 and divalent cations adsorb with stoichiometries of 1:1 and 1:2. Previously the 1:1 and 1:2 binding of divalent cations were assumed to occur by independent, parallel pathways. Here a serial adsorption scheme is considered in which 1:2 binding occurs via reaction of 1:1-bound complexes with adjacent unoccupied phospholipids. This two-dimensional lattice reaction is shown to obey a law of mass action, and the mass-action equilibrium constant is used to parameterize the adsorption isotherm. This isotherm is shown to be mathematically equivalent to the previous isotherm, although the two formulations differ in the dependence of 1:2 binding on the 1:1 association constant.  相似文献   

6.
Evidence is given for a high density of negative surface charge near the sodium channel of myelinated nerve fibres. The voltage dependence of peak sodium permeability is measured in a voltage clamp. The object is to measure voltage shifts in sodium activation as the following external variables are varied: divalent cation concentration and type, monovalent concentration, and pH. With equimolar substitution of divalent ions the order of effectiveness for giving a positive shift is: Ba equals Sr less than Mg less than Ca less than Co approximately equal to Mn less than Ni less than Zn. A tenfold increase of concentration of any of these ions gives a shift of +20 to +25 mV. At low pH, the shift with a tenfold increase in Ca-2+ is much less than at normal pH, and conversely for high pH. Soulutions with no added divalent ions give a shift of minus 18 mV relative to 2 mM Ca-2+. Removal of 7/8 of the cations from the calcium-free solution gives a further shift of minue 35 mV. All shifts are explained quantitatively by assuming that changes in an external surface potential set up by fixed charges near the sodium channel produce the shifts. The model involves a diffuse double layer of counterions at the nerve surface and some binding of H+ions and divalent ions to the fixed charges. Three types of surface groups are postulated: (1) an acid pKa equals 2.88 charge density minus 0.9 nm- minus 2; (i) an acid pKa equals 4.58, charge density minus 0.58 nm- minus 2; (3) a base pKa equals 6.28, charge density +0.33 nm- minus 2. The two acid groups also bind Ca-2+ ions with a dissociation constant K equals 28 M. Reasonable agreement can also be obtained with a lower net surface charge density and stronger binding of divalent ions and H+ ions.  相似文献   

7.
It has been shown that ionophore of bivalent cations (IBC) isolated from fatless, subjected to partial triptic hydrolysis cattle heart or liver mitochondria decreases BPM resistance inducing Ca2+ conductivity. Ions of lanthane in micromolar concentrations decrease calcium conductivity induced with IBC. When ten-fold gradient in Ca2+ was created on BPM the intitiation of the membrane potential fo 9-11 mV was observed. The role fo IBC and water soluble factors binding Ca2+ with high affinity, in the mitochrondial mechanism of Ca2+ translocation is discussed.  相似文献   

8.
A generalization of the Stern theory is derived to treat the simultaneous adsorption of monovalent cations and divalent cations by single-component phospholipid membranes, where the ion:phospholipid binding stoichiometries are 1:1 for the monovalent cations and 1:1 and/or 1:2 for the divalent cations. This study treats both the situation in which the monovalent and divalent cations compete for membrane binding sites and that in which they do not compete. The general formalism of the screening/binding problem is reviewed, and it is shown how the adsorption problem can be isolated from the electrostatics. The statistical mechanics of mixed 1:1- and 1:2-stoichiometric adsorption (the monomer-dimer problem) is treated, and the problem of simultaneous 1:1 and 1:2 binding is solved. A simple expression for this solution, given in the Bethe approximation, is combined with the electrostatics to yield an adsorption isotherm encompassing both 1:1 monovalent-cation, and 1:1 and 1:2 divalent-cation, binding to charged membranes. A comparison with the simplified treatment of previous authors is made and the significance of their assumptions clarified in light of the present result. The present and previous treatments are plotted for a representative case of Na+ and Ca++ binding to a phosphatidylserine membrane. Criteria are established to permit unambiguous experimental testing of the present vs. previous treatments.  相似文献   

9.
10.
Over the last half decade, we have studied saturated and unsaturated phosphatidylcholine (PC)-cholesterol membranes, with special attention paid to fluid-phase immiscibility in cis-unsaturated PC-cholesterol membranes. The investigations were carried out with fatty acid and sterol analogue spin labels for which reorientational diffusion of the nitroxide was measured using conventional ESR technique. We also used saturation recovery ESR technique where dual probes were utilized. Bimolecular collision rates between a membrane-soluble square-planar copper complex,3-ethoxy-2-oxobutyraldehyde bis(N4,N4-dimethylthiosemicarbazonato)copper(II) (CuKTMS2) and one of several nitroxide radical lipid-type spin labels were determined by measuring the nitroxide spin-lattice relaxation time (T1). The results obtained in all these studies can be explained if the following model is assumed: 1) at physiological temperatures, fluid-phase micro-immiscibility takes place in cis-unsaturated PC-cholesterol membranes, which induces cholesterol-rich domains in the membrane due to the steric nonconformability between the rigid fused-ring structure of cholesterol and the 30 degrees bend at the cis double bond of the alkyl chains of unsaturated PC. 2) The cholesterol-rich domains are small and/or of short lifetime (10(-9) s to less than 10(-7) s). Our results also suggest that the extra space that is available for conformational disorder and accommodation of small molecules is created in the central part of the bilayer by intercalation of cholesterol in cis-unsaturated PC membrane due to the mismatch in the hydrophobic length and nonconformability between cis-unsaturated PC alkyl chains and the bulky tetracyclic ring of cholesterol.  相似文献   

11.
12.
Fusion of multilamellar phospholipid vesicles with planar phospholipid bilayer membranes was monitored by the rate of appearance in the planar membrane of an intrinsic membrane protein present in the vesicle membranes. An essential requirement for fusion is an osmotic gradient across the planar membrane, with the cis side (the side containing the vesicles) hyperosmotic to the opposite (trans) side; for substantial fusion rates, divalent cation must also be present on the cis side. Thus, the low fusion rates obtained with 100 mM excess glucose in the cis compartment are enhanced orders of magnitude by the addition of 5-10 mM CaCl2 to the cis compartment. Conversely, the rapid fusion rates induced by 40 mM CaCl2 in the cis compartment are completely suppressed when the osmotic gradient (created by the 40 mM CaCl2) is abolished by addition of an equivalent amount of either CaCl2, NaCl, urea, or glucose to the trans compartment. We propose that fusion occurs by the osmotic swelling of vesicles in contact with the planar membrane, with subsequent rupture of the vesicular and planar membranes in the region of contact. Divalent cations catalyze this process by increasing the frequency and duration of vesicle-planar membrane contact. We argue that essentially this same osmotic mechanism drives biological fusion processes, such as exocytosis. Our fusion procedure provides a general method for incorporating and reconstituting transport proteins into planar phospholipid bilayer membranes.  相似文献   

13.
14.
15.
The dielectric dispersion in the MHz range of the zwitterionic dipolar phosphocholine head groups has been measured from 0--70 degrees C for various mixtures of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and cholesterol. The abrupt change in the derived relaxation frequency f2 observed for pure DPPC at the gel-to-liquid crystalline phase transition at 42 degrees C reduces to a more gradual increase of frequency with temperature as the cholesterol content is increased. In general the presence of cholesterol increases the DPPC head group mobility due to its spacing effect. Below 42 degrees C no sudden changes in f2 are found at 20 or 33 mol% cholesterol, where phase boundaries have been suggested from other methods. Above 42 degrees C, however, a decrease in f2 at cholesterol contents up to 20--30 mol% is found. This is thought to be partly due to an additional restricting effect of the cholesterol on the number of hydrocarbon chain conformations and consequently on the area occupied by the DPPC molecules.  相似文献   

16.
Human apohemoglobin in acidic media was found to induce fusion of phosphatidylcholine/phosphatidylserine (1:1) vesicles at low protein concentration but to fragment the same vesicles to form micellar complex at high protein concentration. The fusion was demonstrated by size increase, vesicle content mixing, lipid mixing, and electron microscopy. The micellization of phospholipid vesicles was observed by light scattering, gel filtration, and electron microscopy. The hydrophobic labeling of the apohemoglobin/vesicle complex followed by CNBr cleavage of apohemoglobin showed that an N-terminal segment of the beta subunit with a molecular weight of approximately 6,000 seems to be mainly involved in the fusion process, but the whole sequences of both alpha and beta chains participate in the micellization process.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号