首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Burning shrub and grassland communities often leads to increases in plant production and nutritional quality that benefit herbivores, resulting in increased herbivore use of burned areas. Increased use has been ascribed more specifically to changes in plant community structure, community composition and diversity, nutritional quality, and seasonal availability. These hypotheses can be evaluated more precisely if changes in plant communities following burning are monitored concurrently with changes in herbivore use, especially in longer-term studies. From 1988 to 1999, we examined responses of elk (Cervus elaphus) following prescribed burning of areas burned in 1984 and 1988 that had been formerly dominated by mountain big sagebrush (Artemisia tridentata ssp. vaseyana) in south-central Montana (USA), with concurrent monitoring of changes in plant production, nutritional quality, and community composition. Elk made increased use of burned sites up to 15 years after burning. Burning transformed big sagebrush-dominated communities into native herbaceous communities that persisted for 15 years without sagebrush reinvasion. Forage biomass and protein content remained higher on burned sites for 15 years, although differences were not significant in every year and declined as time elapsed after burning. Forage production, forage protein, and elk use were temporally correlated, suggesting the possibility that grazing by elk might have contributed to persistence of elevated plant production and protein levels on burned sites.  相似文献   

2.
Woody vegetation can create distinct subcanopy and interspace microsites, which often result in resource islands in subcanopies compared to interspaces. This heterogeneity in soil resources contributes to herbaceous vegetation heterogeneity in plant communities. However, information detailing the impact of disturbance, such as fire, that removes the woody vegetation on microsites and herbaceous vegetation heterogeneity is limited. The purpose of this study was to determine the influence of burning on microsites and herbaceous vegetation in subcanopies and interspaces. Six study sites (blocks) were located at the Northern Great Basin Experimental Range in shrub (Artemisia tridentata ssp. wyomingensis (Beetle & A. Young) S.L. Welsh)-bunchgrass plant communities and one half of each block was burned to remove A. tridentata. Herbaceous vegetation and microsite characteristics were measured 2 years post-fire in intact and burned subcanopies and interspaces. Burning resulted in microsite and herbaceous vegetation differences between intact and burned subcanopies and intact and burned interspaces. However, burned subcanopies and burned interspaces appeared to be relatively similar. The similarity in microsite characteristics probably explains the lack of differences in herbaceous vegetation cover and biomass production between burned subcanopies and burned interspaces (P > 0.05). However, some microsite and herbaceous vegetation characteristics differed between burned subcanopies and burned interspaces. Our results suggest that disturbances that remove woody vegetation reduced microsite and herbaceous vegetation heterogeneity within plant communities, but do not completely remove the resource island effect. This suggests soil resource heterogeneity may influence post-fire community assembly and contribute to diversity maintenance. The Eastern Oregon Agricultural Research Center is jointly funded by the USDA-Agricultural Research Service and Oregon State Agricultural Experiment Station. Mention of a proprietary product does not constitute a guarantee or warranty of the product by USDA, Oregon State University, or the authors and does not imply its approval to the exclusion of other products.  相似文献   

3.
Abstract: Researchers have ascribed use of areas by grazers after burning to changes in plant community structure, community composition, nutritional quality, and seasonal availability. Researchers can better evaluate these alternatives if they monitor changes in plant communities following burning concurrently with changes in animal use. We examined responses of elk (Cervus elaphus) to prescribed burning of areas dominated by sagebrush (Artemisia spp.) in south-central Montana, USA, within which we monitored changes in plant production, nutritional quality, and community composition and diversity from 1989 to 1999. Elk increased use of burned sites 1–2 years after burning, then reduced use to levels associated with preburn conditions over the next 3–10 years. Burning transformed low-diversity, sagebrush-dominated communities into relatively high-diversity, grass- and forb-dominated communities that persisted for 10 years, but forage biomass and protein content declined on burned sites after initial short-term increases. Changes in elk use closely tracked changes in production and nutritional quality of plants. Therefore, we concluded that increases in quantity and quality of forage were the primary cause for increased use of burned sites by elk. Managers may observe only short-term responses from elk following burning but can expect longer-term increases in plant diversity and persistence of grass—forb communities on burned sites for >10 years that may be important to elk or other grazing ungulates.  相似文献   

4.
Abstract Spring burning of sedge‐grass meadows in the Slave River Lowlands (SRL), Northwest Territories, Canada was applied between 1992 and 1998 to reduce shrub encroachment and enhance Bison bison (bison) habitat, although the impact of fire on preferred bison forage was unknown before management. In the summer of 1998 we conducted a study in the Hook Lake area of the SRL to test the effect of burn frequency (unburned, burned once, or burned three times since 1992) on herbaceous plant community composition and Salix spp. L. (willow) shrub vigor. Plant species abundance, litter biomass, soil pH, and depth of the organic soil horizon were measured in 300 1‐m2 quadrats nested within 30 1,000‐m2 plots in both burned and unburned dry meadows. To test the relationship between frequency and willow vigor, all willow shrubs within the plots were assigned a vigor score from I (dead) to IV (flourishing). The spring burns appear to have reduced willow vigor; however, shrub survival remained high (76%) on the most frequently burned meadows. Ordination plots resulting from canonical correspondence analysis suggest that multiple spring burns influenced plant community composition in dry meadow areas and that less palatable bison forage species (e.g., Carex aenea Fern. and Juncus balticus L.) were correlated with a regime of three spring burns. Our results suggest that frequent spring fires in the Hook Lake area have only a small negative effect on willow cover but may reduce the abundance of primary bison forage plants compared with less frequently burned meadows.  相似文献   

5.
金山  武帅楷 《生态学报》2021,41(10):4182-4193
为研究山西太岳山油松(Pinus tabuliformis)林过火后恢复初期林下草本植物群落结构,以2019年3月太岳山油松林火烧迹地为研究对象,采用群落相似性指数、多样性指数、稳定性系数、TWINSPAN数量分类和DCA排序等方法对群落组成、多样性、类型及稳定性等进行了研究。结果表明:(1)火烧迹地恢复初期以低矮灌木和多年生草本植物为主,其中又以地面芽植物占比最大。优势植物主要为大披针薹草(Carex lanceolata)和多花胡枝子(Lespedeza floribunda);(2)火烧迹地恢复初期各样地植物群落相似性系数和多样性指数相对较小,均匀度指数较大,但各样地恢复效果不尽相同,样地6和样地7的植物群落各项指标相对大于其他样地;(3)TWINSPAN数量分类将火烧迹地植物群落划分成:I.大披针薹草+南牡蒿(Artemisia eriopoda)+地榆(Sanguisorba officinalis)群丛、II.多花胡枝子+大披针薹草+二色棘豆(Oxytropis bicolor)群丛、III.多花胡枝子+大披针薹草+米口袋(Gueldenstaedtia verna)群丛、IV.多花胡枝子+大披针薹草+荠苨(Adenophora trachelioides)群丛、V.大披针薹草+白莲蒿(Artemisia stechmanniana)+狗娃花(Aster hispidus)群丛、VI.白莲蒿群丛、VII.大披针薹草+狗娃花+野艾蒿(Artemisia lavandulifolia)群丛;(4)DCA排序结果表明,火烧迹地恢复初期植物群落结构单一,沿样地和坡位变化较小,仅区分出样地7和其他样地两大类植物群落。(5)火烧迹地恢复初期植物群落处于不稳定的状态,但各样地间群落稳定性存在一定差别,其中样地1最大,样地5最小。总之,研究区植物群落处于演替初期,各样地间植物群落稳定性较差,多样性和整体相似性较小,但优势种群相似性较高,植物群落结构仍处于动态变化之中。研究揭示了太岳山火烧迹地恢复初期植物群落结构特征,积累了该区域火烧迹地植物群落生态学数据,同时可为该区域生态恢复提供科学依据。  相似文献   

6.
One of the largest and rarest Bebb willow (Salix bebbiana) communities in the United States occurs at Hart Prairie, Arizona. Low recruitment of the willow over the past several decades has been linked to inadequate soil water content for seed germination and seedling establishment. We tested a hypothesis that a prescribed burn would reduce biomass of and evapotranspiration by herbaceous plants, thereby increasing soil water content. Three treatments (unburned control, early‐growing season burned, late‐growing season burned) were applied in year 2001 to replicated plots in fern‐ and grass‐dominated herbaceous communities. Soil water content (0–30 cm) was measured weekly in plots during the 2001, 2002, and 2003 growing seasons. Both early‐ and late‐season burning reduced herbaceous biomass in the fern‐dominated community in 2002 and 2003 and reduced biomass in the grass‐dominated community in 2002 but not in 2003. Soil water content increased for approximately four weeks in 2001 following the early‐season burn, but the early‐season and late‐season burns reduced soil water content in both communities over much of the 2002 and 2003 growing seasons. Thus, early‐season burning may benefit willow seed germination by increasing soil water content immediately following burning but be detrimental to germination in the second and third growing seasons after burning because of drier soil. Large temporal variation in the effect of prescribed burning on soil water content will complicate the use of fire as a restoration tool to manage soil water available for threatened plants such as Bebb willow and for recharge of groundwater.  相似文献   

7.
Sun  Yuxin  Wu  Jianping  Shao  Yuanhu  Zhou  Lixia  Mai  Bixian  Lin  Yongbiao  Fu  Shenglei 《Ecological Research》2011,26(3):669-677
Prescribed burning is a common site preparation practice for forest plantation in southern China. However, the effects of prescribed burning on soil microbial communities are poorly understood. This study examined changes in microbial community structure, measured by phospholipid fatty acids (PLFAs), after a single prescribed burning in two paired vegetation sites in southern China. The results showed that the total amount of PLFA (totPLFA) was similar under two vegetation types in the wet season but differed among vegetation type in the dry season, and was affected significantly by burning treatment only in the wet season. Bacterial PLFA (bactPLFA) and fungal PLFA (fungPLFA) in burned plots all decreased compared to the unburned plots in both seasons (P = 0.059). Fungi appeared more sensitive to prescribed burning than bacteria. Both G+ bacterial PLFA and G bacterial PLFA were decreased by the burning treatment in both dry and wet seasons. Principal component analysis of PLFAs showed that the burning treatment induced a shift in soil microbial community structure. The variation in soil microbial community structure was correlated significantly to soil organic carbon, total nitrogen, available phosphorus and exchangeable potassium. Our results suggest that prescribed burning results in short-term changes in soil microbial communities but the long-term effects of prescribed burning on soil microbial community remain unknown and merit further investigation.  相似文献   

8.
Livestock grazing affects plant community composition, diversity, and carbon (C) and nutrient cycling in grasslands. Grazing leads to plant communities that have higher relative abundance of grazing-tolerant species, which in turn may alter the chemical composition of biomass and subsequent litter decomposition rates. To better understand the effects of long-term grazing and associated vegetation shifts on biogeochemical cycling in northern temperate grasslands of western Canada, we studied litter decomposition over 18 months at 15 locations, stratified across the Mixed-grass Prairie, Central Parkland, and Foothills Fescue natural subregions. At each location, we examined decomposition in an area exposed to grazing and an area where cattle were excluded. We used litterbags containing leaf litter from seven major grass species representing different grazing tolerances and included a local source of community litter from each study site and cellulose paper as standards. Decomposition was affected by litter types, with litter from grazing-tolerant species such as Poa pratensis and Bouteloua gracilis having faster decomposition rates compared to grazing-intolerant species, supporting the hypothesis that changes in vegetation composition due to grazing influences biogeochemical cycling by modifying litter decomposition in grasslands. Litter decomposition was also overall most rapid in the cool–wet Foothills Fescue, followed by the temperate mesic Central Parkland, and slowest in the warmer–drier Mixed-grass Prairie. Combined with known grazing-induced changes in grassland composition, these findings indicate that livestock grazing may accelerate litter decomposition rates in the more mesic Foothills Fescue and parkland regions, but not the more arid Mixed-grass Prairie. Overall, this study elucidates the role of livestock grazing and its associated effects on litter decomposition and ecosystem processes in northern grassland ecosystems.  相似文献   

9.
Fire is important in maintaining a diversity of communities and landscapes in boreal ecosystems, but, in recent times, forest management has suppressed fires. Managers now commonly burn a proportion of clear-cuts in Sweden to conserve components of the fire-favoured fauna, but effects of these treatments on the ant fauna are unknown. We compared ant communities between burned and control clear-cuts to determine their value for this important faunal group. Ants were collected in 1995 and 1996 from 5 burned and 5 control clear-cuts in mid-boreal Sweden. We compared abundances of workers and reproductive females of common species between the treatments. Burned and control clear-cuts supported similar abundances of common species, differing only in the abundance of Leptothorax acervorum queens collected in 1995. This suggests that L. acervorum was attracted to the burning, but we did not detect an increase in the abundance of its workers the following year. The abundance of dominant red wood ants (F. rufa group) was not correlated with that of any other species, suggesting that their patchy occurrence did not conceal differences between treatments. Our findings suggest that nests of many ant species survive low severity fires. Habitat structure is likely to be important in determining ant community structure and low severity burning in disturbed open habitats, such as the clear-cuts examined in this study, may not significantly alter habitat structure relative to unburned habitats in the short term.  相似文献   

10.
Biofilms represent a metabolically active and structurally complex component of freshwater ecosystems. Ephemeral prairie streams are hydrologically harsh and prone to frequent perturbation. Elucidating both functional and structural community changes over time within prairie streams provides a general understanding of microbial responses to environmental disturbance. We examined microbial succession of biofilm communities at three sites in a third‐order stream at Konza Prairie over a 2‐ to 64‐day period. Microbial abundance (bacterial abundance, chlorophyll a concentrations) increased and never plateaued during the experiment. Net primary productivity (net balance of oxygen consumption and production) of the developing biofilms did not differ statistically from zero until 64 days suggesting a balance of the use of autochthonous and allochthonous energy sources until late succession. Bacterial communities (MiSeq analyses of the V4 region of 16S rRNA) established quickly. Bacterial richness, diversity and evenness were high after 2 days and increased over time. Several dominant bacterial phyla (Beta‐, Alphaproteobacteria, Bacteroidetes, Gemmatimonadetes, Acidobacteria, Chloroflexi) and genera (Luteolibacter, Flavobacterium, Gemmatimonas, Hydrogenophaga) differed in relative abundance over space and time. Bacterial community composition differed across both space and successional time. Pairwise comparisons of phylogenetic turnover in bacterial community composition indicated that early‐stage succession (≤16 days) was driven by stochastic processes, whereas later stages were driven by deterministic selection regardless of site. Our data suggest that microbial biofilms predictably develop both functionally and structurally indicating distinct successional trajectories of bacterial communities in this ecosystem.  相似文献   

11.
Prescribed burning currently is used to preserve endemicity of plant communities in remnant tallgrass prairies. Although some types of arthropods benefit from changes in plant communities brought about by burning, other species that are endemic to prairies may be threatened. Because they inhabit the fuel layer of prairies, endophytic insects would seem particularly susceptible to this management tactic. In this paper, we assess the impact of prescribed burning on endophytic insect communities inhabiting stems of Silphium laciniatum L. and S. terebinthinaceum Jacquin (Asteraceae), endemic prairie plants. Populations of these insects were decimated by burning, with mortality approaching 100% in most cases. Their populations nevertheless began to rebound within a single growing season, with densities moderately but significantly reduced 1 year after the burn. Even when a prairie remnant was completely incinerated, plant stems were recolonized by insects within one growing season. Our findings suggest that sufficient numbers of endophytic insects survive burns in remains of Silphium to recolonize burned areas the following year.  相似文献   

12.
Abstract Prescribed fire is often used to restore grassland systems to presettlement conditions; however, fire also has the potential to facilitate the invasion of exotic plants. Managers of wildlands and nature reserves must decide whether and how to apply prescribed burning to the best advantage in the face of this dilemma. Herbicide is also used to control exotic plants, but interactions between fire and herbicides have not been well studied. Potentilla recta is an exotic plant invading Dancing Prairie Preserve in northwest Montana. We used a complete factorial design with all combinations of spring burn, fall burn, no burn, picloram herbicide, and no herbicide to determine the effects of fire, season of burn, and their interaction with herbicide on the recruitment and population growth of P. recta over a 5‐year period. Recruitment of P. recta was higher in burn plots compared with controls the first year after the fire, but this did not lead to significant population growth in subsequent years, possibly due to drier than normal conditions that occurred most years of the study. Effect of season of burn was variable among years but was higher in fall compared with spring burn plots across all years. Herbicide effectively eliminated P. recta from sample plots for 3–5 years. By the end of the study density of P. recta was greater in herbicide plots that were burned than those that were not. Results suggest that prescribed fire will enhance germination of P. recta, but this will not always lead to increased population growth. Prescribed fire may reduce the long‐term efficacy of herbicide applied to control P. recta and will be most beneficial at Dancing Prairie when conducted in the spring rather than the fall. Results of prescribed fire on exotic plant invasions in semiarid environments will be difficult to predict because they are strongly dependent on stochastic climatic events.  相似文献   

13.
Wildfires and harvesting are important disturbances to forest ecosystems, but their effects on soil microbial communities are not well characterized and have not previously been compared directly. This study was conducted at sites with similar soil, climatic, and other properties in a spruce-dominated boreal forest near Chisholm, Alberta, Canada. Soil microbial communities were assessed following four treatments: control, harvest, burn, and burn plus timber salvage (burn-salvage). Burn treatments were at sites affected by a large wildfire in May 2001, and the communities were sampled 1 year after the fire. Microbial biomass carbon decreased 18%, 74%, and 53% in the harvest, burn, and burn-salvage treatments, respectively. Microbial biomass nitrogen decreased 25% in the harvest treatment, but increased in the burn treatments, probably because of microbial assimilation of the increased amounts of available NH4+ and NO3 due to burning. Bacterial community composition was analyzed by nonparametric ordination of molecular fingerprint data of 119 samples from both ribosomal intergenic spacer analysis (RISA) and rRNA gene denaturing gradient gel electrophoresis. On the basis of multiresponse permutation procedures, community composition was significantly different among all treatments, with the greatest differences between the two burned treatments versus the two unburned treatments. The sequencing of DNA bands from RISA fingerprints revealed distinct distributions of bacterial divisions among the treatments. Gamma- and Alphaproteobacteria were highly characteristic of the unburned treatments, while Betaproteobacteria and members of Bacillus were highly characteristic of the burned treatments. Wildfire had distinct and more pronounced effects on the soil microbial community than did harvesting.  相似文献   

14.
Geostatistical techniques are used to evaluate spatial characteristics of riparian plant communities that were mapped within a portion of the lower reaches of the Heihe River. The spatial structures of different plant communities were characterized using nugget, range and sill parameters of spherical or exponential model variograms. Model variograms revealed different plant communities with distinctive spatial properties that were quantified effectively by the parameters used in these models. Model variograms were fit to experimental variograms calculated from diameter at breast height and plant cover data collected for three 2,000 m × 5 m, nine 500 m × 5 m, and three 200 m × 2 m transects. The 2,000 m × 5 m transects were oriented perpendicular to the river and the other transects were located in such a way as to sample communities dominated by different plants. Riparian plant communities in the lower reaches of the Heihe River show patterns of patchiness, and the plant communities are mainly dominated by mature Populus euphratica, young P. euphratica, Tamarix chinensis, and Sophora alopecuroides. The maximum model variogram range for all communities was 55 m, suggesting that transects must be at least this long in order to be able to classify them unambiguously into recognizable communities. Experimental variograms were calculated for all plants in each of four mapped plant communities. The results show that the T. chinensis and S. alopecuroides dominated plant communities have distinctively large ranges, and the spatial structures of P. euphratica dominated plant communities show multiscale change. In the 2,000 m × 5 m transects, the spatial structures of riparian plant communities show a distinct change at the scale of 430 m, because this scale also is the scale of vegetation patchiness turnover, and at scales of more than 430 m the spatial structure of the community increases significantly. These findings confirm the potential of using high-resolution remote sensing data and geostatistics for determining the vegetation community structures of riparian plant communities.  相似文献   

15.
This study aimed to identify dominant plant communities across five wet and mesic meadows in the Sierra Nevada Range (California, USA) and examine the impacts of environmental and grazing gradients on plant community distribution and diversity. Species composition and environmental conditions were recorded in 100 plots over two years. Classification and ordination analyses were used to classify plant communities and identify relationships between community types and both environmental and grazing gradients. We identified the following six plant community types: Carex jonesii, Carex leporinella, Carex nebrascensis, Carex utriculata, Eleocharis pauciflora, and Veratrum californicum. We found strong connections between plant communities and water table variables, with low water table (r 2?=?0.56) and mean water table (r 2?=?0.30) significantly correlated with Axis 1 while high water table (r 2?=?0.29) and elevation were correlated with Axis 3 (r 2?=?0.49). We found significant differences among community types for all three water table variables and for elevation. We found no correlation between grazing and community type classification, but there was a significant difference in grazing levels among community types. The plant communities and relationships to water table found in this work may aid managers in understanding present conditions and identifying future changes in meadow ecosystems.  相似文献   

16.
The effects of six burning treatments combined with two insecticide treatments of alfalfa (Medicago sativa L.) stubble on alfalfa plant bug, Adelphocoris lineolatus (Goeze) and Lygus spp. populations were evaluated over an 8-yr period (1982–1989). The burn treatments were: burning every spring and autumn, burning in alternate springs, burning at 50–100 mm and 150–200 mm of spring growth, and an unburned control. Alfalfa plant bug, which overwinters in the egg stage in alfalfa stems, were reduced by the spring burns. First generation populations of Lygus spp., were enhanced by the burn treatments before spring growth appeared, but were reduced when alfalfa was burned over 50 mm of spring growth. Counts of the minute pirate bug, Onus tristicolor White, were enhanced in 1983 by all burn treatments, and in 1985 by some of the burn treatments. Of all the predators, only spiders were significantly reduced and only in 1986 by the burned every autumn and spring treatments.  相似文献   

17.
Holzmueller EJ  Jose S  Jenkins MA 《Oecologia》2008,155(2):347-356
Exotic diseases have fundamentally altered the structure and function of forest ecosystems. Controlling exotic diseases across large expanses of forest has proven difficult, but fire may reduce the levels of diseases that are sensitive to environmental conditions. We examined Cornus florida populations in burned and unburned QuercusCarya stands to determine if burning prior to anthracnose infection has reduced the impacts of an exotic fungal disease, dogwood anthracnose, caused by Discula destructiva. We hypothesized that fire has altered stand structure and created open conditions less conducive to dogwood anthracnose. We compared C. florida density, C. florida health, and species composition and density among four sampling categories: unburned stands, and stands that had burned once, twice, and 3 times over a 20-year period (late 1960s to late 1980s). Double burn stands contained the greatest density of C. florida stems (770 stems ha−1) followed by triple burn stands (233 stems ha−1), single burn stands (225 stems ha−1) and unburned stands (70 stems ha−1; P < 0.01). We observed less crown dieback in small C. florida trees (<5 cm diameter at breast height) in burned stands than in unburned stands (P < 0.05). Indicator species analysis showed that burning favored species historically associated with QuercusCarya forests and excluded species associated with secondary succession following nearly a century of fire suppression. Our results suggest that fire may mitigate the decline of C. florida populations under attack by an exotic pathogen by altering forest structure and composition. Further, our results suggest that the burns we sampled have had an overall restorative effect on forest communities and were within the fire return interval of the historic fire regime. Consequently, prescribed fire may offer a management tool to reduce the impacts of fungal disease in forest ecosystems that developed under historic burning regimes.  相似文献   

18.
19.
Question: We investigated how cattle and European hares, the two most widespread exotic herbivores in Patagonia, affect species composition, life‐form composition and community structure during the first 6 years of vegetation recovery following severe burning of fire‐resistant subalpine forests and fire‐prone tall shrublands. We asked how the effects of introduced herbivores on post‐fire plant community attributes affect flammability of the vegetation. Location: Nahuel Huapi National Park, northwest Patagonia, Argentina Methods: We installed fenced plots to exclude livestock and European hares from severely burned subalpine forests of Nothofagus pumilio and adjacent tall shrublands of N. antarctica. The former is an obligate seed reproducer, whereas the latter and all other woody dominants of the shrubland vigorously resprout after burning. Results: Repeated measures ANOVA of annual measurements over the 2001‐2006 period indicate that cattle and hare exclusion had significant but complex effects on the cover of graminoids, forbs, climber species and woody species in the two burned community types. Significant interactions between the effects of cattle and hares varied by plant life forms between the two communities, which implies that their synergistic effects are community dependent. Conclusions: Following severe fires, the combined effects of cattle and hares inhibit forest recovery and favour transition to shrublands dominated by resprouting woody species. This herbivore‐induced trend in vegetation structure is consistent with the hypothesis that the effects of exotic herbivores at recently burned sites contribute to an increase in the overall flammability of the Patagonian landscape.  相似文献   

20.
Abstract: Fire‐affected forests are becoming an increasingly important component of tropical landscapes. The impact of wildfires on rainforest communities is, however, poorly understood. In this study the density, species richness and community composition of seedlings, saplings, trees and butterflies were assessed in unburned and burned forest following the 1997/98 El Niño Southern Oscillation burn event in East Kalimantan, Indonesia. More than half a year after the fires, sapling and tree densities in the burned forest were only 2.5% and 38.8%, respectively, of those in adjacent unburned forest. Rarefied species richness and Shannon's H’ were higher in unburned forest than burned forest for all groups but only significantly so for seedlings. There were no significant differences in evenness between unburned and burned forest. Matrix regression and Akaike's information criterion (AIC) revealed that the best explanatory models of similarity included both burning and the distance between sample plots indicating that both deterministic processes (related to burning) and dispersal driven stochastic processes structure post‐disturbance rainforest assemblages. Burning though explained substantially more variation in seedling assemblage structure whereas distance was a more important explanatory variable for trees and butterflies. The results indicate that butterfly assemblages in burned forest were primarily derived from adjacent unburned rainforest, exceptions being species of grass‐feeders such as Orsotriaena medus that are normally found in open, disturbed areas, whereas burned forest seedling assemblages were dominated by typical pioneer genera, such as various Macaranga species that were absent or rare in unburned forest. Tree assemblages in the burned forest were represented by a subset of fire‐resistant species, such as Eusideroxylon zwageri and remnant dominant species from the unburned forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号