首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
淹水时间对水稻土中地杆菌科群落结构及丰度的影响   总被引:2,自引:0,他引:2  
【目的】通过模拟水稻土淹水过程,探讨地杆菌科(Geobacteraceae)群落结构和相对丰度随淹水时间的动态变化特征,揭示其群落结构和相对丰度变化与微生物Fe(Ⅲ)还原的内在联系。【方法】提取水稻土淹水培养1 h、1 d、5 d、10 d、20 d和30 d后的微生物总DNA,构建地杆菌科16S rDNA克隆文库,采用PCR-RFLP方法分析地杆菌科的群落结构和多样性变化特征,通过Real-time PCR技术测定地杆菌科相对丰度的动态变化。采用厌氧泥浆培养方法,测定水稻土中Fe(Ⅱ)产生量变化。【结果】供试水稻土中,微生物Fe(Ⅲ)还原过程在淹水培养初期变化明显,培养20 d后达到稳定期,最大铁还原潜势为10.16 mg/g,最大反应速率为1.064 mg/(g.d),最大反应速率对应的时间为4.84 d。α多样性指数显示,水稻土中地杆菌科的多样性随淹水时间延长呈现波动性变化,淹水5 d和20 d处理出现2个峰值,而淹水10 d和30 d处理的多样性明显减小。β多样性指数表明淹水过程中群落结构存在明显差异。不同淹水时间共产生了10种地杆菌科优势类型,分别属于Clade 1和Clade 2。Real-time PCR结果表明,地杆菌科与总细菌16S rDNA丰度的比值在淹水培养1 d时最小(1.20%),而20 d时达到最大值(4.54%)。【结论】淹水培养的水稻土中,地杆菌科微生物的多样性和相对丰度的动态变化与微生物Fe(Ⅲ)还原过程密切相关。  相似文献   

2.
水稻土是非常复杂又典型的生态系统, 分析淹水培养过程中水稻土细菌的丰度和群落结构变化规律, 可以客观反映水稻土中细菌群落结构信息, 为深入探讨水稻土细菌微生物对稻田的影响和在生态系统中的作用(营养元素转换、重金属还原与抑制甲烷生成过程等)提供实验基础与理论依据。作者采用淹水非种植水稻土微环境模式系统, 提取水稻土淹水培养1 h和1、5、10、20、30、40、60 d后的微生物总DNA, 利用Real-time PCR和PCR-DGGE (denaturing gradient gel electrophoresis)技术检测了淹水培养过程中细菌丰度与群落结构的变化。结果表明: 淹水水稻土中细菌的丰度在1 d时最大, 并在40 d到达第二个峰值, 说明淹水过程改变了细菌的丰度。基于16S rRNA基因V3区的DGGE图谱分析显示, 淹水过程中细菌的群落结构发生了演替性变化: r-策略生存的细菌仅存在于淹水初期; k-策略生存的细菌存在于淹水后期; r-和k-策略共生存的细菌存在于整个淹水过程中, 淹水后期k-策略的细菌占据优势。淹水培养过程中优势种群多样性指数大体呈现先上升后减小的趋势。主成分分析(PCA)将淹水处理过程分成几类不同的生境, 反映出中、后期细菌群落结构较为稳定; 测序结果表明, 32个优势条带所代表的细菌分别属于厚壁菌门、绿弯菌门、拟杆菌门、变形菌门和酸杆菌门, 且与来自不同地域的水稻土、其他类型土壤、活性污泥以及湖泊沉积物等生态系统的细菌关系密切。  相似文献   

3.
丁草胺对水稻土甲烷释放和厌氧细菌的影响   总被引:1,自引:0,他引:1  
近年来,我国水稻田的化除面积增加很快,除草剂的使用已成为一种必不可少的手段。因而除草剂大量使用的环境污染问题日益突出,对生态系统的平衡产生威胁性影响,引起农产品农药含量超标,或者即使不超标也由于食物链的生物富集最终进入人体危害健康。除草剂致癌、致突变和致畸胎的事实不胜枚举。除草剂在水稻田使用,至少有70%进入土壤,直接影响土壤微生物的生长和代谢。  相似文献   

4.
卢静  刘金波  盛荣  刘毅  陈安磊  魏文学   《生态学杂志》2014,25(10):2879-2884
为了探明水稻土落干过程对温室气体排放和反硝化微生物的影响,通过模拟水稻土淹水落干过程,系统监测了落干开始后24 h内N2O的释放和氧化还原电位(Eh)的变化,并利用实时PCR(qPCR)方法测定了反硝化功能基因narG和nosZ的丰度.结果表明:落干开始后4 h N2O释放量就明显增加,在24 h时N2O的释放量比淹水对照增加了5倍多;narG和nosZ基因丰度也随着落干过程的推移而快速增加;而且N2O排放通量与narG基因呈极显著相关(P<0.01).表明水稻土短期淹水落干过程中,含narG基因反硝化微生物是驱动N2O释放的主要功能微生物.  相似文献   

5.
【目的】研究水稻土淹水培养过程中Fe-氢酶微生物的多样性,对于揭示Fe-氢酶微生物的群落演替规律和产氢微生物的生化代谢机理具有重要的意义。【方法】采用PCR-变性梯度凝胶电泳和实时定量PCR技术进行基于梭菌属Fe-氢酶基因的多样性和丰度的分析。【结果】水稻土淹水培养过程中Fe-氢酶基因的变性梯度凝胶电泳图谱显示,培养1-5 d时Fe-氢酶基因条带数增加,10 d时Fe-氢酶基因条带数减少,20-40 d时Fe-氢酶基因条带数再次增加并保持稳定,对应的含Fe-氢酶微生物的群落结构随着培养过程的进行发生了显著变化。主成分分析表明,1 d与20 d、5 d与10 d、30 d与40 d的含Fe-氢酶微生物群落结构相似性较高,随着培养时间的增长含Fe-氢酶微生物群落结构趋于稳定。α多样性指数分析显示,1 d和10 d的丰富度指数(R)、Shannon-Weaver指数(H’)、Simpson指数(DS)与其他时间点相比较小,说明这2个时间点的Fe-氢酶多样性低,对应的含Fe-氢酶微生物群落结构较为简单,表明淹水培养过程中微生物的群落结构发生了演替变化。变性梯度凝胶电泳指纹图谱15个Fe-氢酶的优势条带测序后构建的系统发育树表明,培养前期的优势条带与梭菌属的Fe-氢酶关系较近,培养后期出现了非梭菌属的Fe-氢酶。淹水培养过程中Fe-氢酶基因的拷贝数在106/g干土的水平,占细菌的相对比例为1‰–2‰。【结论】水稻土淹水培养过程中发现了4种梭菌属Fe-氢酶和3种非梭菌属Fe-氢酶基因,对应的含Fe-氢酶微生物在培养前期群落结构发生显著演替变化,培养后期趋于稳定。  相似文献   

6.
研究以草鱼(Ctenopharyngodon idellus)为实验对象, 运用厌氧培养的方法, 研究了饥饿状态下草鱼肠道黏膜固有微生物的类群及其在不同肠段的分布。实验结果显示草鱼前肠、中肠与后肠中细菌的数量分别是3.17×103、1.63×104和1.79×107 cfu/g。研究共分离到274株单菌落, 经16S rRNA鉴定, 分别属于拟杆菌属(Bacteroides spp.)、鲸杆菌属(Cetobacterium spp.)、梭形杆菌属(Fusobacterium spp.)、气单胞菌属(Aeromonas spp.)、希瓦氏菌属(Shewanella spp.)、芽孢杆菌属(Bacillus spp.)、泛菌属(Pantoea spp.)和柠檬酸杆菌属(Citrobacter spp.)8个种类, 其中专性厌氧细菌的数量占9.1%, 兼性厌氧细菌的数量占90.9%。进一步分析发现, 前肠中只分离到兼性厌氧细菌, 中肠与后肠专性厌氧细菌和兼性厌氧细菌都有分布。专性厌氧细菌Bacteroides paurosaccharolyticus和Bacteroides luti在中肠与后肠都有分布, 而Cetobacterium somerae和Fusobacterium ulcerans只在后肠有发现。兼性厌氧细菌是草鱼肠道黏膜的优势菌群, 其中嗜水气单胞菌Aeromonas hydrophila占73.7%。草鱼肠道不同部位固有厌氧微生物组成存在差异, 细菌数量也明显不同, 后肠中具有更高的细菌丰度和多样性。  相似文献   

7.
[目的]连续3次风干-湿润循环培养水稻土,在DNA和RNA水平下,探究细菌对干湿交替胁迫的响应机制,明确风干水稻土能否代替新鲜土壤进行细菌群落组成分析.[方法]针对我国江苏省常熟市水稻土,开展新鲜土壤的3次风干-湿润循环连续培养处理(每次循环中风干、湿润状态各维持7 d),在DNA和RNA水平应用16S rRNA基因高...  相似文献   

8.
【背景】氨氧化细菌是驱动硝化作用的关键微生物,其群落多样性变化对土壤氮素转化具有重要意义。转基因作物可能通过根系分泌物和植株残体组成的改变对土壤微生物群落产生影响。【方法】本研究通过田间定位试验,利用特异引物进行PCR-DGGE(聚合酶链反应—变性梯度凝胶电泳)和荧光定量PCR,分析了种植转cry1 Ac/cpti双价抗虫基因水稻第3、4年土壤中氨氧化细菌群落组成和丰度的变化。【结果】水稻各生育期(分蘖期、齐穗期和成熟期)内,转cry1 Ac/cpti基因杂交稻Ⅱ优科丰8号(GM)的土壤氨氧化细菌16S rRNA基因群落组成、多样性指数与其对应的非转基因杂交稻Ⅱ优明恢86(CK)间均没有显著差异;以DGGE条带为基础的氨氧化细菌群落组成的冗余分析(RDA)显示,GM和CK的土壤氨氧化细菌群落组成只与水稻生育期存在显著相关性(P=0.002和0.018);同时,水稻各生育期内土壤氨氧化细菌16S rRNA基因丰度在GM和CK间也没有显著差异,但均随水稻生长而变化且在齐穗期达到最高(P〈0.05)。【结论与意义】稻田土壤氨氧化细菌的群落组成与丰度在水稻不同生育期存在差异,但在转cry1 Ac/cpti基因水稻和非转基因水稻间没有显著差异,即一定时期内种植转cry1 Ac/cpti抗虫基因水稻不会影响土壤氨氧化细菌的群落组成和丰度。  相似文献   

9.
沙月霞  沈瑞清 《生态学报》2019,39(22):8442-8451
水稻内生细菌群落是反映植株内环境是否健康稳定的重要生物学指标,芽胞杆菌是防治水稻病害的重要生防微生物。为揭示芽胞杆菌浸种处理对水稻内生细菌群落结构的影响,采用Illumina MiSeq测序的方法对水稻内生细菌的16S rRNA基因进行测序,剖析了芽胞杆菌浸种处理对不同水稻组织内生细菌的微生态调控作用。结果表明,3种芽胞杆菌浸种处理可以提高水稻根和茎部内生细菌群落的丰富度和均匀度,降低叶部内生细菌群落的丰富度和均匀度,显著增加根部内生细菌群落多样性。变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)和拟杆菌门(Bacteroidetes)是水稻根部和茎部共有优势菌门,厚壁菌门和芽胞杆菌属(Bacillus)是叶部共有优势菌门和属。芽胞杆菌浸种处理显著提高了叶部内生厚壁菌门和芽胞杆菌属的相对丰度,增加了根系和茎部组织内生细菌的分类单元OTU(Operational Taxonomic Units)数量,对叶部组织影响不明显;降低了茎部和叶部中参与各种代谢通路的内生细菌丰度,显著增加了根部参与代谢通路的内生细菌丰度。因此,3种芽胞杆菌浸种处理可以显著改变水稻根部、茎部和叶部内生细菌群落结构,改善水稻生长的微生态环境。  相似文献   

10.
多粘类芽胞杆菌是具有极高应用价值和安全性的生防菌株,对人和动植物均无致病性,某些菌株能够分泌多肽蛋白、酶和植物激素等活性产物,这些产物能够防治植物土传病害并促进植物生长和增产。针对近年来多粘类芽胞杆菌在防治土传病害及植物促生长等方面的研究进展进行了综述。  相似文献   

11.
为了考察白僵菌使用后的生态安全性,研究了白僵菌施加对水稻3种保护酶活力及叶际微生物多样性的影响。使用荧光定量PCR对喷洒白僵菌孢子悬液的水稻叶际提取总DNA并进行荧光定量PCR扩增,发现白僵菌可以在水稻叶际残留达30 d之久,并且初始喷施浓度越大,衰减速率越高。与施加化学农药相比,施加白僵菌没有对水稻叶片的3种抗氧化酶活力带来不利影响。白僵菌处理组SOD、POD活力在第10天时高于对照组20.38%、8.65%,而CAT活力在第30天时最高高于对照组33.67%,在第30天时,化学农药导致CAT活力相比较对照组下降了42.71%。使用DGGE分析表明白僵菌对水稻叶际细菌、真菌微生物群落结构影响较小,并且白僵菌处理组微生物群落结构相似度、香农指数及条带数均较高。结果表明白僵菌是一种环境友好型的微生物农药。  相似文献   

12.
郑燕  侯海军  秦红灵  朱亦君  魏文学 《生态学报》2012,32(11):3386-3393
以紫潮泥和红黄泥两种不同质地的水稻土壤作为研究对象,通过室内培养试验,分析施用硝态氮肥对N2O释放和反硝化基因(narG/nosZ)丰度的影响,并探讨反硝化基因丰度与N2O释放之间的关系。结果表明,施用硝态氮显著增加两种水稻土的N2O释放量。在72h培养过程中,施氮改变了紫潮泥反硝化基因(narG/nosZ)的丰度,但并未明显影响红黄泥反硝化基因(narG/nosZ)丰度。通过双变量相关分析发现,除了紫潮泥narG基因外,其它的反硝化基因丰度和N2O释放之间并没有显著相关性。  相似文献   

13.
太湖水华期间有毒和无毒微囊藻种群丰度的动态变化   总被引:1,自引:0,他引:1  
李大命  叶琳琳  于洋  张民  阳振  孔繁翔 《生态学报》2012,32(22):7109-7116
采用荧光定量PCR技术分析太湖3个湖区(梅梁湾、贡湖湾和湖心)水体中有毒和无毒微囊藻基因型丰度及有毒微囊藻比例的季节变化(2010年4-9月),并与环境因子进行统计分析。结果表明,有毒微囊藻基因型丰度及所占比例存在季节和空间差异:从4-8月,有毒微囊藻基因型丰度及其比例呈逐渐增加趋势,到9月开始下降;梅梁湾水体中有毒微囊藻基因型丰度及其比例高于贡湖湾和湖心。梅梁湾、贡湖湾和湖心有毒微囊藻在微囊藻种群中的比例变化范围分别为(26.2±0.8)%-(64.3±2.2)%、(4.4±0.2)%-(22.1±1.8)%和(10.4±0.4)%-(20.6±1.5)%。相关分析结果表明,有毒微囊藻丰度、总微囊藻丰度和叶绿素a浓度呈极显著正相关(P<0.01),均与温度呈显著正相关(P<0.05);有毒微囊藻比例与磷浓度呈显著正相关(P<0.05),与温度呈极显著正相关(P<0.01)。研究结果表明,温度和磷浓度是决定太湖有毒微囊藻种群丰度及其比例的关键因子。  相似文献   

14.
在新疆古尔班通古特沙漠中的梭梭、白梭梭上发现由木虱引起的叶苞状虫瘿,发生率达到90%以上,虫瘿内有4种木虱:异色胖木虱(Caillardia robusta Loginova)、梭梭胖木虱(C. azurea Loginova)、矮胖木虱(C. nana Loginova)和显赫胖木虱(C. notata Loginova),后两种为中国新记录种。木虱在梭梭上1a发生两个高峰,丘间低地发生最为严重,沙丘边缘与砾石荒漠发生量相差不大,在5月中旬和6月中旬达到高峰期;木虱在白梭梭上1a发生两个高峰,低丘比高丘发生严重,阳坡比阴坡发生严重,在6月中旬和7月底8月初达到高峰期。梭梭和白梭梭上树龄越大虫瘿发生越严重。地势、树势、方位及地势、坡面对木虱虫瘿的发生都存在显著性影响,但是它们互作对木虱虫瘿的影响却不大。通过研究古尔班通古特沙漠梭梭和白梭梭上木虱虫瘿的发生规律及其与周边环境的关系,为保护荒漠生态环境提供依据。  相似文献   

15.
李茜  刘增文  米彩红 《生态学报》2012,32(19):6067-6075
通过采集树木枯落叶与土壤进行室内混合分解培养试验,研究了黄土高原常见的樟子松和落叶松与其他树种枯落叶混合分解对土壤性质的影响及存在的相互作用,从而为不同树木种间关系的探索和该地区人工纯林的混交改造提供科学指导。结果表明:12种枯落叶单一分解均明显提高了土壤脲酶(54%—110%)、脱氢酶(85%—288%)和磷酸酶(81%—301%)活性以及有机质(29%—55%)和碱解N(12%—49%)含量,但对土壤速效P含量和CEC的影响存在较大差异。综合而言,樟子松分别与白桦、刺槐、白榆、柠条和落叶松枯落叶混合分解在对土壤性质的影响中存在相互促进作用,而分别与小叶杨、沙棘、紫穗槐、侧柏和辽东栎枯落叶混合分解在对土壤性质的影响中存在相互抑制作用;落叶松分别与刺槐、白桦、小叶杨和紫穗槐枯落叶混合分解在对土壤性质的影响中存在相互促进作用,而分别与柠条、侧柏、辽东栎、沙棘、油松和白榆枯落叶混合分解在对土壤性质的影响中存在相互抑制作用。  相似文献   

16.
Discrimination of Leishmaniainfantum and L. donovani, the members of the L. (L.) donovani complex, is important for diagnosis and epidemiological studies of visceral leishmaniasis (VL). We have developed two molecular tools including a restriction fragment length polymorphisms of amplified DNA (PCR-RFLP) and a PCR that are capable to discriminate L. donovani from L. infantum. Typing of the complex was performed by a simple PCR of cysteineproteaseB (cpb) gene followed by digestion with DraIII. The enzyme cuts the 741-bp amplicon of L. donovani into 400 and 341 bp fragments whereas the 702 bp of L. infantum remains intact. The designed PCR species-specific primer pair is specific for L. donovani and is capable of amplifying a 317 bp of 3’ end of cpb gene of L. donovani whereas it does not generate an amplicon for L. infantum. The species-specific primers and the restriction enzyme were designed based on a 39 bp insertion/deletion (indel) in the middle of the cpb gene. Both assays could differentiate correctly the two species and are reliable and high-throughput alternatives for molecular diagnosis and epidemiological studies of VL in various foci.  相似文献   

17.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号