首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The removal of recalcitrant chemicals in wastewater treatment systems is an increasingly relevant issue in industrialized countries. The elimination of persistent xenobiotics such as endocrine-disrupting chemicals (EDCs) emitted by municipal and industrial sewage treatment plants remains an unsolved challenge. The existing efficacious physico-chemical methods, such as advanced oxidation processes, are resource-intensive technologies. In this work, we investigated the possibility to remove phenolic EDCs [i.e., bisphenol A (BPA)] by means of a less energy and chemical consuming technology. To that end, cheap and resistant oxidative enzymes, i.e., laccases, were immobilized onto silica nanoparticles. The resulting nanobiocatalyst produced at kilogram scale was demonstrated to possess a broad substrate spectrum regarding the degradation of recalcitrant pollutants. This nanobiocatalyst was applied in a membrane reactor at technical scale for tertiary wastewater treatment. The system efficiently removed BPA and the results of long-term field tests illustrated the potential of fumed silica nanoparticles/laccase composites for advanced biological wastewater treatment.  相似文献   

2.
ABSTRACT

Recently, the enzymatic approach has attracted much interest in the decolorization/degradation of textile and other industrially important dyes from wastewater as an alternative strategy to conventional chemical, physical and biological treatments, which pose serious limitations. Enzymatic treatment is very useful due to the action of enzymes on pollutants even when they are present in very dilute solutions and recalcitrant to the action of various microbes participating in the degradation of dyes. The potential of the enzymes (peroxidases, manganese peroxidases, lignin peroxidases, laccases, microperoxidase-11, polyphenol oxidases, and azoreductases) has been exploited in the decolorization and degradation of dyes. Some of the recalcitrant dyes were not degraded/decolorized in the presence of such enzymes. The addition of certain redox mediators enhanced the range of substrates and efficiency of degradation of the recalcitrant compounds. Several redox mediators have been reported in the literature, but very few of them are frequently used (e.g., 1-hydroxybenzotriazole, veratryl alcohol, violuric acid, 2-methoxy-phenothiazone). Soluble enzymes cannot be exploited at the large scale due to limitations such as stability and reusability. Therefore, the use of immobilized enzymes has significant advantages over soluble enzymes. In the near future, technology based on the enzymatic treatment of dyes present in the industrial effluents/wastewater will play a vital role. Treatment of wastewater on a large scale will also be possible by using reactors containing immobilized enzymes.  相似文献   

3.
Recently, the enzymatic approach has attracted much interest in the decolorization/degradation of textile and other industrially important dyes from wastewater as an alternative strategy to conventional chemical, physical and biological treatments, which pose serious limitations. Enzymatic treatment is very useful due to the action of enzymes on pollutants even when they are present in very dilute solutions and recalcitrant to the action of various microbes participating in the degradation of dyes. The potential of the enzymes (peroxidases, manganese peroxidases, lignin peroxidases, laccases, microperoxidase-11, polyphenol oxidases, and azoreductases) has been exploited in the decolorization and degradation of dyes. Some of the recalcitrant dyes were not degraded/decolorized in the presence of such enzymes. The addition of certain redox mediators enhanced the range of substrates and efficiency of degradation of the recalcitrant compounds. Several redox mediators have been reported in the literature, but very few of them are frequently used (e.g., 1-hydroxybenzotriazole, veratryl alcohol, violuric acid, 2-methoxy-phenothiazone). Soluble enzymes cannot be exploited at the large scale due to limitations such as stability and reusability. Therefore, the use of immobilized enzymes has significant advantages over soluble enzymes. In the near future, technology based on the enzymatic treatment of dyes present in the industrial effluents/wastewater will play a vital role. Treatment of wastewater on a large scale will also be possible by using reactors containing immobilized enzymes.  相似文献   

4.
Laccases (EC 1.10.3.2) are phenoloxidases involved in the transformation of the recalcitrant fraction of organic matter in soil. These enzymes are also able to transform certain aromatic pollutants such as polycyclic aromatic hydrocarbons (PAHs) and are known to be inhibited by chloride ions. This study aims to test the potential of some fungal strains newly isolated from natural environments subjected to high osmotic pressure such as coastal ecosystems, to produce chloride tolerant laccases. Three strains were identified as Chaetomium sp., Xylogone sphaerospora (two Ascomycota), and Coprinopsis sp. (a Basidiomycota) and the laccases produced by these fungi were weakly inhibited by chloride ions compared with previous data from literature. Moreover, we tested their reactivity towards various PAHs which are widespread anthropic pollutants. They were able to transform anthracene to 9,10-anthraquinone and we determine 7.5 eV as the threshold of ionization potential for PAH oxidation by these laccases.  相似文献   

5.

Background, aim and scope  

Established in 1992, the European Union Ecolabel, that is briefly called “the Flower” because of the mark, is a voluntary ecological product award issued by the 1980/2000 Regulation (EC 2000). Adopting the ISO classification, the EU Ecolabel belongs to the “Type I environmental labelling” (ISO 14024:1999). The possibility to include GreenHouse Gases (GHG) emissions (as of CO2 equivalents) among the EU Ecolabel criteria is a news that is justified to the consideration that, in the last 30 years, their management and limitation assumed a relevant and strategic importance for greenhouse effect control. This paper introduces results of a project for the European Commission that aimed at developing and checking a carbon footprint calculator procedure suitable for the inclusion of the GHG emission issue in the EU Ecolabel criteria. The output tool is primarily aimed at the policy maker, i.e. the European Commission, the European Union Ecolabel Board and the Ad Hoc Working Group (AHWG, created to develop a transparent and wide discussion with reference stakeholders, see Fig. 2 for more details), but, in this step, not directly to the applicant yet.  相似文献   

6.
Current legislation in the European Union (EU) requires a risk assessment for industrial chemicals. The underlying procedures and paradigms of such EU risk assessment for new and existing chemicals are explained. The risk assessment is performed according to a harmonised methodology, laid down in the Technical Guidance Documents (TGD). Important new, technical risk assessment aspects covered in a recent revision round of the TGD are highlighted. The most prominent change in the environmental TGD part is the addition of the marine risk assessment, including a Persistent Bioaccumulation and Toxicity (PBT) assessment. In the human health part a significant change is the new data requirement for reproductive toxicity. The performance of both the risk assessment and the risk reduction phase of EU existing chemicals have been evaluated. An important conclusion was that our a priori knowledge on possible risks of chemicals is poor. The European Commission has recently launched a proposal (REACH) for drastically changing the risk management process of industrial chemicals in the EU. Major changes are a shift in responsibility from authorities to industry (including downstream users) for the safe use of chemicals, an acceleration of data collection for ‘non-assessed’ chemicals, and an authorization step for substances of very high concern.  相似文献   

7.
Abstract

Enzymatic treatments based on oxidative enzymes, such as peroxidases, laccases and tyrosinases, have been proposed as an alternative to conventional methods to remove a broad range of contaminants present in wastewater. The aim of this study is to discuss existing technologies for the removal of pollutants based on the use of oxidative enzymes, including a discussion on the most important factors affecting the efficiency of the proposed systems. Factors involved in the catalytic cycle of the enzyme (biocatalyst, substrates and mediators), the addition of certain components to the reaction medium (additives, surfactants or solvents) as well as operational parameters (temperature, pH or agitation) will be discussed. Finally, two types of reactors: one-stage and two-stage enzymatic membrane reactors, especially designed for the treatment of micropollutants present in secondary effluents, will be described in detail.  相似文献   

8.
Recent advances in methane fermentation technology   总被引:5,自引:0,他引:5  
In the past two decades, a number of biotechnologies for anaerobic (methanogenic) wastewater treatment have been created, and practical applications of these processes are now being extended to more recalcitrant wastewaters and to wastewaters at extreme temperatures. Our knowledge of methanogenic organic degradation associated with bioreactors is also accumulating at a rapid rate. The recent advancement of such fundamental understanding is attributed to modern molecular biology techniques applied to the study of microbial communities and to continuous challenges to the cultivation of many important but recalcitrant anaerobes in bioreactors.  相似文献   

9.
This paper describes and discusses the main problems related to anaerobic batch and fed-batch processes for wastewater treatment. A critical analysis of the literature evaluated the industrial application viability and proposed alternatives to improve operation and control of this system. Two approaches were presented in order to make this anaerobic discontinuous process feasible for industrial application: (1) optimization of the operating procedures in reactors containing self-immobilized sludge as granules, and (2) design of bioreactors with inert support media for biomass immobilization. Received: 22 May 2000 / Received revision: 20 July 2000 / Accepted: 21 July 2000  相似文献   

10.
Liverpool John Moores University and FRAME recently conducted a research project, sponsored by DEFRA, on the status of alternatives to animal testing with regard to the European Union REACH (Registration, Evaluation and Authorisation of Chemicals) system for the safety testing and risk assessment of chemicals. The project covered all the main toxicity endpoints associated with the REACH system. This report focuses on how to maximise the use of alternative methods (both in vitro and in silico) for skin corrosion and irritation testing within a tiered testing strategy. It considers the latest developments in in vitro testing, with particular reference to the reconstituted skin models which have now been now been successfully validated and independently endorsed as suitable for both skin corrosivity and irritancy testing within the EU.  相似文献   

11.
Combining membrane technology with biological reactors for the treatment of municipal and industrial wastewaters has led to the development of three generic membrane processes within bioreactors: for separation and recycle of solids; for bubbleless aeration of the bioreactor; and for extraction of priority organic pollutants from hostile industrial wastewaters. Commercial aerobic and anaerobic membrane separation bioreactors already provide a small footprint alternative to conventional biological treatment methods, producing a high-quality effluent at high organic loading rates. Both the bubbleless aeration and extractive membrane bioreactors are in the development stages. The former uses gas-permeable membranes to improve the mass transfer of oxygen to the bioreactor by providing bubbleless oxygen. By using a silicone membrane process, extractive membrane bioreactors transfer organic pollutants from chemically hostile wastewaters to a nutrient medium for subsequent biodegradation. All three membrane bioreactor (MBR) processes are comparatively and critically reviewed. (c) 1996 John Wiley & Sons, Inc.  相似文献   

12.
Textile wastewater is difficult to treat as it usually contains considerable amounts of different pollutants, which are often recalcitrant, toxic and inhibitory. Therefore, complex treatment schemes based on the sequence of various steps are usually required for an effective treatment. This explains why textile effluents are often treated in centralized plants and sometimes mixed with municipal wastewater. The adoption of new technologies for on-site treatment, instead, would be optimal, deeply reducing treatment costs. An innovative technology exhibiting several characteristics appropriate for the attainment of such a goal is sequencing batch biofilter granular reactor (SBBGR). To assess the suitability of this technology, two lab-scale reactors were operated, treating mixed municipal-textile wastewater and a pure textile effluent, respectively. Results have demonstrated that mixed wastewater can be successfully treated with very low hydraulic retention times (less than 10 hours). Furthermore, SBBGR shows to be an effective pre-treatment for textile wastewater for discharge into sewer systems. The economic evaluation of the process showed operative costs of 0.10 and 0.19 € per m(3) of mixed wastewater and textile wastewater, respectively.  相似文献   

13.
14.
In its White Paper, Strategy for a Future Chemicals Policy, published in 2001, the European Commission (EC) proposed the REACH (Registration, Evaluation and Authorisation of CHemicals) system to deal with both existing and new chemical substances. This system is based on a top-down approach to toxicity testing, in which the degree of toxicity information required is dictated primarily by production volume (tonnage). If testing is to be based on traditional methods, very large numbers of laboratory animals could be needed in response to the REACH system, causing ethical, scientific and logistical problems that would be incompatible with the time-schedule envisaged for testing. The EC has emphasised the need to minimise animal use, but has failed to produce a comprehensive strategy for doing so. The present document provides an overall scheme for predictive toxicity testing, whereby the non-animal methods identified and discussed in a recent and comprehensive ECVAM document, could be used in a tiered approach to provide a rapid and scientifically justified basis for the risk assessment of chemicals for their toxic effects in humans. The scheme starts with a preliminary risk assessment process (involving available information on hazard and exposure), followed by testing, based on physicochemical properties and (Q)SAR approaches. (Q)SAR analyses are used in conjunction with expert system and biokinetic modelling, and information on metabolism and identification of the principal metabolites in humans. The resulting information is then combined with production levels and patterns of use to assess potential human exposure. The nature and extent of any further testing should be based strictly on the need to fill essential information gaps in order to generate adequate risk assessments, and should rely on non-animal methods, as far as possible. The scheme also includes a feedback loop, so that new information is used to improve the predictivity of computational expert systems. Several recommendations are made, the most important of which is that the European Union (EU) should actively promote the improvement and validation of (Q)SAR models and expert systems, and computer-based methods for biokinetic modelling, since these offer the most realistic and most economical solution to the need to test large numbers of chemicals.  相似文献   

15.
In its White Paper, "Strategy for a Future Chemicals Policy," published in 2001, the European Commission (EC) proposed the REACH (Registration, Evaluation and Authorisation of CHemicals) system to deal with both existing and new chemical substances. This system is based on a top-down approach to toxicity testing, in which the degree of toxicity information required is dictated primarily by production volume (tonnage). If testing is to be based on traditional methods, very large numbers of laboratory animals could be needed in response to the REACH system, causing ethical, scientific and logistical problems that would be incompatible with the time-schedule envisaged for testing. The EC has emphasised the need to minimise animal use, but has failed to produce a comprehensive strategy for doing so. The present document provides an overall scheme for predictive toxicity testing, whereby the non-animal methods identified and discussed in a recent and comprehensive ECVAM document, could be used in a tiered approach to provide a rapid and scientifically justified basis for the risk assessment of chemicals for their toxic effects in humans. The scheme starts with a preliminary risk assessment process (involving available information on hazard and exposure), followed by testing, based on physicochemical properties and (Q)SAR approaches. (Q)SAR analyses are used in conjunction with expert system and biokinetic modelling, and information on metabolism and identification of the principal metabolites in humans. The resulting information is then combined with production levels and patterns of use to assess potential human exposure. The nature and extent of any further testing should be based strictly on the need to fill essential information gaps in order to generate adequate risk assessments, and should rely on non-animal methods, as far as possible. The scheme also includes a feedback loop, so that new information is used to improve the predictivity of computational expert systems. Several recommendations are made, the most important of which is that the European Union (EU) should actively promote the improvement and validation of (Q)SAR models and expert systems, and computer-based methods for biokinetic modelling, since these offer the most realistic and most economical solution to the need to test large numbers of chemicals.  相似文献   

16.
In this study the flows of chemical risk information for paint as a consumer product were investigated from a product chain perspective. The main method of research involved semi‐structured interviews with Swedish manufacturers of paint and chemicals. In addition, retailers and consumers were interviewed. The flows of chemical risk information between actors within (e.g., manufacturers, retailers, and consumers) and outside (e.g., industry associations and regulators) the paint product chain are described. Because the European chemical legislation REACH (Registration, Evaluation, Authorization and restriction of CHemicals) plays a large role in the management of chemical risk information at companies, some consequences of REACH on actors in the paint product chain are described. Examples of such consequences are that importing of chemicals from non–European Union (EU) countries may be discouraged and that some low‐volume chemicals may no longer be produced. However, manufacturers do not yet see these consequences as impediments to innovation. The results of this work show that chemical risk information is most comprehensive during the manufacturing steps of the product chain. This is due not only to tradition and industry initiatives, but also to REACH and other legislation. The results also illustrate the need for evaluation of how chemical risk information is used in different contexts and the importance of directing the right information at the right target group. Following legislative development, more specialized information is required in the safety data sheet (SDS), and because of this many manufacturers find it necessary to create simplified safety sheets that make the most pertinent safety and hazard information easily accessible to individuals that handle the chemicals in their factories. The study found that in creating the simplified safety sheets, the content and use of chemical risk information is evaluated and adjusted for presentation to this particular target group. It is evident that the Swedish Paint and Printing Ink Makers Association plays an important role in the interpretation of legal requirements and even in agreements for providing information that exceeds legal requirements.  相似文献   

17.
18.
Liverpool John Moores University and FRAME conducted a joint research project, sponsored by Defra, on the status of alternatives to animal testing with regard to the European Union REACH (Registration, Evaluation and Authorisation of Chemicals) system for the safety testing and risk assessment of chemicals. The project covered all the main toxicity endpoints associated with REACH. This paper focuses on the use of alternative (non-animal) methods (both in vitro and in silico) for acute systemic toxicity and toxicokinetic testing. The paper reviews in vitro tests based on basal cytotoxicity and target organ toxicity, along with QSAR models and expert systems available for this endpoint. The use of PBPK modelling for the prediction of ADME properties is also discussed. These tests are then incorporated into a decision-tree style, integrated testing strategy, which also includes the use of refined in vivo acute toxicity tests, as a last resort. The implementation of the strategy is intended to minimise the use of animals in the testing of acute systemic toxicity and toxicokinetics, whilst satisfying the scientific and logistical demands of the EU REACH legislation.  相似文献   

19.
FRAME initiatives on the European Union REACH (Registration, Evaluation and Authorisation of Chemicals) system for the safety testing and risk assessment of chemicals, first proposed as a White Paper in 2001, are summarised. These initiatives considered the scientific and animal welfare issues raised by the REACH proposals, and resulted in a number of suggestions for improvement, many of which seem to have been adopted during the current progress of the legislation through the European Council and European Parliament.  相似文献   

20.
The final EU REACH legislation has recently been adopted. This article considers the progress that has been made toward reducing the numbers of animals likely to be required to fulfil the testing requirements, and also considers the benefits to animal welfare and science that have arisen since the original REACH system proposals were published in 2003. Several positive changes have been made, including: the use of exposure-based testing; the requirement for scientific justification of any proposed animal testing; mandatory data sharing; and the fact that the EU is to take responsibility for the development and validation of alternative methods. While these changes are to be commended, there is still much room for improvement, particularly with respect to the adoption of integrated testing strategies that make maximum use of non-animal approaches to expedite the risk assessment process of existing chemicals, with the use of refined and updated animal tests only as a last resort.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号