首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

The usefulness of available vaccine and serological tests for leptospirosis is limited by the low cross-reactivity of antigens from numerous serovars of pathogenic Leptospira spp. Identification of genus-specific protein antigens (GP-Ag) of Leptospira would be important for development of universal vaccines and serodiagnostic methods. OmpL1, a transmembrane porin of pathogenic leptospires, was identified as a possible GP-Ag, but its sequence diversity and immune cross-reactivity among different serovars of pathogenic leptospires remains largely unknown.  相似文献   

2.

Background  

Leptospira is the causative genus of the disease, leptospirosis. Species identification of pathogenic Leptospira in the past was generally performed by either DNA-DNA hybridisation or 16s rRNA gene sequencing. Both methods have inherent disadvantages such as the need for radio-labelled isotopes or significant homology between species. A conventional and real-time PCR amplification and sequencing method was developed for an alternate gene target: DNA gyrase subunit B (gyrB). Phylogenetic comparisons were undertaken between pathogenic Leptospira 16srRNA and gyrB genes using clustering and minimum evolution analysis. In addition 50 unidentified Leptospira isolates were characterised by gyrB sequencing and compared with conventional 16s rRNA sequencing.  相似文献   

3.

Background  

Pathogenic Leptospira species cause leptospirosis, a zoonotic disease of global importance. The spirochete displays active rotative mobility which may contribute to invasion and diffusion of the pathogen in hosts. FliY is a flagellar motor switch protein that controls flagellar motor direction in other microbes, but its role in Leptospira, and paricularly in pathogenicity remains unknown.  相似文献   

4.

Background  

Leptospirosis, a zoonosis caused by Leptospira spp., is recognized as an emergent infectious disease. Due to the lack of adequate diagnostic tools, vaccines are an attractive intervention strategy. Recombinant proteins produced in Escherichia coli have demonstrated promising results, albeit with variable efficacy. Pichia pastoris is an alternative host with several advantages for the production of recombinant proteins.  相似文献   

5.

Background

Bacteria of the genus Leptospira, the causative agents of leptospirosis, are categorized into pathogenic and non-pathogenic species. However, the benefit of using a clinical diagnostic that is specific for pathogenic species remains unclear. In this study, we present the development of a real-time PCR (rtPCR) for the detection of pathogenic Leptospira (the pathogenic rtPCR), and we perform a comparison of the pathogenic rtPCR with a published assay that detects all Leptospira species [the undifferentiated febrile illness (UFI) assay] and a reference 16S Leptospira rtPCR, which was originally designed to detect pathogenic species.

Methodology/Principal Findings

For the pathogenic rtPCR, a new hydrolysis probe was designed for use with primers from the UFI assay, which targets the 16S gene. The pathogenic rtPCR detected Leptospira DNA in 37/37 cultured isolates from 5 pathogenic and one intermediate species. Two strains of the non-pathogenic L. biflexa produced no signal. Clinical samples from 65 patients with suspected leptospirosis were then tested using the pathogenic rtPCR and a reference Leptospira 16S rtPCR. All 65 samples had tested positive for Leptospira using the UFI assay; 62 (95.4%) samples tested positive using the pathogenic rtPCR (p = 0.24). Only 24 (36.9%) samples tested positive in the reference 16S rtPCR (p<0.0001 for comparison with the pathogenic rtPCR and UFI assays). Amplicon sequencing confirmed the detection of pathogenic Leptospira species in 49/50 cases, including 3 cases that were only detected using the UFI assay.

Conclusions/Significance

The pathogenic rtPCR displayed similar sensitivity to the UFI assay when testing clinical specimens with no difference in specificity. Both assays proved significantly more sensitive than a real-time molecular test used for comparison. Future studies are needed to investigate the clinical and epidemiologic significance of more sensitive Leptospira detection using these tests.  相似文献   

6.

Background  

Heme is typically a major iron source for bacteria, but little is known about how bacteria of the Leptospira genus, composed of both saprophytic and pathogenic species, access heme.  相似文献   

7.

Background

Rapid PCR-based tests for the diagnosis of leptospirosis can provide information that contributes towards early patient management, but these have not been adopted in Thailand. Here, we compare the diagnostic sensitivity and specificity of two real-time PCR assays targeting rrs or lipL32 for the diagnosis of leptospirosis in northeast Thailand.

Methods/Principal Findings

A case-control study of 266 patients (133 cases of leptospirosis and 133 controls) was constructed to evaluate the diagnostic sensitivity and specificity (DSe & DSp) of both PCR assays. The median duration of illness prior to admission of cases was 4 days (IQR 2–5 days; range 1–12 days). DSe and DSp were determined using positive culture and/or microscopic agglutination test (MAT) as the gold standard. The DSe was higher for the rrs assay than the lipL32 assay (56%, (95% CI 47–64%) versus 43%, (95% CI 34–52%), p<0.001). No cases were positive for the lipL32 assay alone. There was borderline evidence to suggest that the DSp of the rrs assay was lower than the lipL32 assay (90% (95% CI 83–94%) versus 93%, (95%CI 88–97%), p = 0.06). Nine controls gave positive reactions for both assays and 5 controls gave a positive reaction for the rrs assay alone. The DSe of the rrs and lipL32 assays were high in the subgroup of 39 patients who were culture positive for Leptospira spp. (95% and 87%, respectively, p = 0.25).

Conclusions/Significance

Early detection of Leptospira using PCR is possible for more than half of patients presenting with leptospirosis and could contribute to individual patient care.  相似文献   

8.

Background

Leptospirosis, a spirochaetal zoonotic disease, is the cause of epidemics associated with high mortality in urban slum communities. Infection with pathogenic Leptospira occurs during environmental exposures and is traditionally associated with occupational risk activities. However, slum inhabitants reside in close proximity to environmental sources of contamination, suggesting that transmission during urban epidemics occurs in the household environment.

Methods and Findings

A survey was performed to determine whether Leptospira infection clustered within households located in slum communities in the city of Salvador, Brazil. Hospital-based surveillance identified 89 confirmed cases of leptospirosis during an outbreak. Serum samples were obtained from members of 22 households with index cases of leptospirosis and 52 control households located in the same slum communities. The presence of anti-Leptospira agglutinating antibodies was used as a marker for previous infection. In households with index cases, 22 (30%) of 74 members had anti-Leptospira antibodies, whereas 16 (8%) of 195 members from control households had anti-Leptospira antibodies. Highest titres were directed against L. interrogans serovars of the Icterohaemorrhagiae serogroup in 95% and 100% of the subjects with agglutinating antibodies from case and control households, respectively. Residence in a household with an index case of leptospirosis was associated with increased risk (OR 5.29, 95% CI 2.13–13.12) of having had a Leptospira infection. Increased infection risk was found for all age groups who resided in a household with an index case, including children <15 years of age (P = 0.008).

Conclusions

This study identified significant household clustering of Leptospira infection in slum communities where recurrent epidemics of leptospirosis occur. The findings support the hypothesis that the household environment is an important transmission determinant in the urban slum setting. Prevention therefore needs to target sources of contamination and risk activities which occur in the places where slum inhabitants reside.  相似文献   

9.

Background  

A cross-sectional study was carried out to determine the seroprevalence of different serovars of Leptospira spp. and their association with clinical disease and host factors in Swedish horses.  相似文献   

10.

Background

Widespread but particularly incident in the tropics, leptospirosis is transmitted to humans directly or indirectly by virtually any Mammal species. However, rodents are recognized as the most important reservoir. In endemic regions, seasonal outbreaks are observed during hot rainy periods. In such regions, hot spots can be evidenced, where leptospirosis is “hyper-endemic”, its incidence reaching 500 annual cases per 100,000. A better knowledge of how rodent populations and their Leptospira prevalence respond to seasonal and meteorological fluctuations might help implement relevant control measures.

Methodology/Principal Findings

In two tribes in New Caledonia with hyper-endemic leptospirosis, rodent abundance and Leptospira prevalence was studied twice a year, in hot and cool seasons for two consecutive years. Highly contrasted meteorological situations, particularly rainfall intensities, were noted between the two hot seasons studied. Our results show that during a hot and rainy period, both the rodent populations and their Leptospira carriage were higher. This pattern was more salient in commensal rodents than in the sylvatic rats.

Conclusions/Significance

The dynamics of rodents and their Leptospira carriage changed during the survey, probably under the influence of meteorology. Rodents were both more numerous and more frequently carrying (therefore disseminating) leptospires during a hot rainy period, also corresponding to a flooding period with higher risks of human exposure to waters and watered soils. The outbreaks of leptospirosis in hyper-endemic areas could arise from meteorological conditions leading to both an increased risk of exposure of humans and an increased volume of the rodent reservoir. Rodent control measures would therefore be most effective during cool and dry seasons, when rodent populations and leptospirosis incidence are low.  相似文献   

11.

Background  

Leptospirosis is a zoonosis of worldwide distribution caused by infection with pathogenic serovars of Leptospira spp. The most common species, L. interrogans, can survive in the environment for lengthy periods of time in between infection of mammalian hosts. Transmission of pathogenic Leptospira to humans mostly occurs through abraded skin or mucosal surfaces after direct or indirect contact with infected animals or contaminated soil or water. The spirochete then spreads hematogenously, resulting in multi-organ failure and death in severe cases. Previous DNA microarray studies have identified differentially expressed genes required for adaptation to temperature and osmolarity conditions inside the host compared to those of the environment.  相似文献   

12.

Background

Leptospira (L.) interrogans are bacteria responsible for a worldwide reemerging zoonosis. Rodents carry L. interrogans asymptomatically in their kidneys and excrete bacteria in the urine, contaminating the environment. Humans get infected through skin contact and develop a mild or severe leptospirosis that may lead to renal failure and fibrosis. L. interrogans provoke an interstitial nephritis, but the induction of fibrosis caused by L. interrogans has not been studied in murine models. Innate immune receptors from the TLR and NLR families have recently been shown to play a role in the development and progression of tissue fibrosis in the lung, liver and kidneys under different pathophysiological situations. We recently showed that TLR2, TLR4, and NLRP3 receptors were crucial in the defense against leptospirosis. Moreover, infection of a human cell line with L. interrogans was shown to induce TLR2-dependent production of fibronectin, a component of the extracellular matrix. Therefore, we thought to assess the presence of renal fibrosis in L. interrogans infected mice and to analyze the contribution of some innate immune pathways in this process.

Methodology/principal findings

Here, we characterized by immunohistochemical studies and quantitative real-time PCR, a model of Leptospira-infected C57BL/6J mice, with chronic carriage of L. interrogans inducing mild renal fibrosis. Using various strains of transgenic mice, we determined that the renal infiltrates of T cells and, unexpectedly, TLR and NLR receptors, are not required to generate Leptospira-induced renal fibrosis. We also show that the iNOS enzyme, known to play a role in Leptospira-induced interstitial nephritis, also plays a role in the induction of renal fibrosis.

Conclusion/significance

To our knowledge, this work provides the first experimental murine model of sustained renal fibrosis induced by a chronic bacterial infection that may be peculiar, since it does not rely on TLR or NLR receptors. This model may prove useful to test future therapeutic strategies to combat Leptospira-induced renal lesions.  相似文献   

13.
Leptospirosis is a global zoonosis caused by pathogenic Leptospira. Neutrophils are key cells against bacterial pathogens but can also contribute to tissue damage. Because the information regarding the role of human neutrophils in leptospirosis is scant, we comparatively analysed the human neutrophil's response to saprophytic Leptospira biflexa serovar Patoc (Patoc) and the pathogenic Leptospira interrogans serovar Copenhageni (LIC). Both species triggered neutrophil responses involved in migration, including the upregulation of CD11b expression, adhesion to collagen, and the release of IL‐8. In addition, both species increased levels of pro‐inflammatory IL‐1β and IL‐6 associated with the inflammasome and NFκB pathway activation and delayed neutrophil apoptosis. LIC was observed on the neutrophil surface and not phagocytized. In contrast, Patoc generated intracellular ROS associated with its uptake. Neutrophils express the TYRO3, AXL, and MER receptor protein tyrosine kinases (TAM), but only LIC selectively increased the level of AXL. TLR2 but not TLR4‐blocking antibodies abrogated the IL‐8 secretion triggered by both Leptospira species. In summary, we demonstrate that Leptospira species trigger a robust neutrophil activation and pro‐inflammatory response. These findings may be useful to find new diagnostic markers and therapeutic strategies against leptospirosis.  相似文献   

14.

Background

A sustained outbreak of leptospirosis occurred in northeast Thailand between 1999 and 2003, the basis for which was unknown.

Methods and Findings

A prospective study was conducted between 2000 and 2005 to identify patients with leptospirosis presenting to Udon Thani Hospital in northeast Thailand, and to isolate the causative organisms from blood. A multilocus sequence typing scheme was developed to genotype these pathogenic Leptospira. Additional typing was performed for Leptospira isolated from human cases in other Thai provinces over the same period, and from rodents captured in the northeast during 2004. Sequence types (STs) were compared with those of Leptospira drawn from a reference collection. Twelve STs were identified among 101 isolates from patients in Udon Thani. One of these (ST34) accounted for 77 (76%) of isolates. ST34 was Leptospira interrogans, serovar Autumnalis. 86% of human Leptospira isolates from Udon Thani corresponded to ST34 in 2000/2001, but this figure fell to 56% by 2005 as the outbreak waned (p = 0.01). ST34 represented 17/24 (71%) of human isolates from other Thai provinces, and 7/8 (88%) rodent isolates. By contrast, 59 STs were found among 76 reference strains, indicating a much more diverse population genetic structure; ST34 was not identified in this collection.

Conclusions

Development of an MLST scheme for Leptospira interrogans revealed that a single ecologically successful pathogenic clone of L. interrogans predominated in the rodent population, and was associated with a sustained outbreak of human leptospirosis in Thailand.  相似文献   

15.
Leptospirosis is caused by Leptospira, gram negative spirochaetes whose microbiologic identification is difficult due to their low rate of growth and metabolic activity. In Colombia leptospirosis diagnosis is achieved by serological techniques without unified criteria for what positive titers are. In this study we compared polymerase chain reaction (PCR) with microbiological culture and dark field microscopy for the diagnosis of leptospirosis. Microbiological and molecular techniques were performed on 83 samples of urine taken from bovines in the savannahs surrounding Bogotá in Colombia, with presumptive diagnosis of leptospirosis. 117 samples of urine taken from healthy bovines were used as negative controls. 83 samples were MAT positive with titers ≥ 1:50; 81 with titers ≥ 1:100; and 66 with titers ≥ 1:200. 36% of the total samples (73/200) were Leptospira positives by microbiological culture, 32% (63/200) by dark field microscopy and 37% (74/200) by PCR. Amplicons obtained by PCR were 482 base pair long which are Leptospira specific. An amplicon of 262 base pairs typical of pathogenic Leptospira was observed in 71 out of the 74 PCR positive samples. The remaining 3 samples showed a 240 base pair amplicon which is typical of saprophytic Leptospira. PCR as a Leptospira diagnosis technique was 100% sensitive and 99% specific in comparison to microbiological culture. Kappa value of 0.99 indicated an excellent concordance between these techniques. Sensitivity and specificity reported for MAT when compared to microbiological culture was 0.95 and 0.89 with a ≥ 1:50 cut off. PCR was a reliable method for the rapid and precise diagnosis of leptospirosis when compared to traditional techniques in our study. The research presented here will be helpful to improve diagnosis and control of leptospirosis in Colombia and other endemic countries.  相似文献   

16.
BackgroundLeptospirosis is an important but neglected bacterial zoonosis that has been largely overlooked in Africa. In this systematic review, we aimed to summarise and compare current knowledge of: (1) the geographic distribution, prevalence, incidence and diversity of acute human leptospirosis in Africa; and (2) the geographic distribution, host range, prevalence and diversity of Leptospira spp. infection in animal hosts in Africa.MethodsFollowing Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines, we searched for studies that described (1) acute human leptospirosis and (2) pathogenic Leptospira spp. infection in animals. We performed a literature search using eight international and regional databases for English and non-English articles published between January 1930 to October 2014 that met out pre-defined inclusion criteria and strict case definitions.

Results and Discussion

We identified 97 studies that described acute human leptospirosis (n = 46) or animal Leptospira infection (n = 51) in 26 African countries. The prevalence of acute human leptospirosis ranged from 2 3% to 19 8% (n = 11) in hospital patients with febrile illness. Incidence estimates were largely restricted to the Indian Ocean islands (3 to 101 cases per 100,000 per year (n = 6)). Data from Tanzania indicate that human disease incidence is also high in mainland Africa (75 to 102 cases per 100,000 per year). Three major species (Leptospira borgpetersenii, L. interrogans and L. kirschneri) are predominant in reports from Africa and isolates from a diverse range of serogroups have been reported in human and animal infections. Cattle appear to be important hosts of a large number of Leptospira serogroups in Africa, but few data are available to allow comparison of Leptospira infection in linked human and animal populations. We advocate a ‘One Health’ approach to promote multidisciplinary research efforts to improve understanding of the animal to human transmission of leptospirosis on the African continent.  相似文献   

17.

Background

Leptospirosis has become an urban health problem as slum settlements have expanded worldwide. Efforts to identify interventions for urban leptospirosis have been hampered by the lack of population-based information on Leptospira transmission determinants. The aim of the study was to estimate the prevalence of Leptospira infection and identify risk factors for infection in the urban slum setting.

Methods and Findings

We performed a community-based survey of 3,171 slum residents from Salvador, Brazil. Leptospira agglutinating antibodies were measured as a marker for prior infection. Poisson regression models evaluated the association between the presence of Leptospira antibodies and environmental attributes obtained from Geographical Information System surveys and indicators of socioeconomic status and exposures for individuals. Overall prevalence of Leptospira antibodies was 15.4% (95% confidence interval [CI], 14.0–16.8). Households of subjects with Leptospira antibodies clustered in squatter areas at the bottom of valleys. The risk of acquiring Leptospira antibodies was associated with household environmental factors such as residence in flood-risk regions with open sewers (prevalence ratio [PR] 1.42, 95% CI 1.14–1.75) and proximity to accumulated refuse (1.43, 1.04–1.88), sighting rats (1.32, 1.10–1.58), and the presence of chickens (1.26, 1.05–1.51). Furthermore, low income and black race (1.25, 1.03–1.50) were independent risk factors. An increase of US$1 per day in per capita household income was associated with an 11% (95% CI 5%–18%) decrease in infection risk.

Conclusions

Deficiencies in the sanitation infrastructure where slum inhabitants reside were found to be environmental sources of Leptospira transmission. Even after controlling for environmental factors, differences in socioeconomic status contributed to the risk of Leptospira infection, indicating that effective prevention of leptospirosis may need to address the social factors that produce unequal health outcomes among slum residents, in addition to improving sanitation.  相似文献   

18.

Background

The Norway rat (Rattus norvegicus) is the principal reservoir for leptospirosis in many urban settings. Few studies have identified markers for rat infestation in slum environments while none have evaluated the association between household rat infestation and Leptospira infection in humans or the use of infestation markers as a predictive model to stratify risk for leptospirosis.

Methodology/Principal Findings

We enrolled a cohort of 2,003 urban slum residents from Salvador, Brazil in 2004, and followed the cohort during four annual serosurveys to identify serologic evidence for Leptospira infection. In 2007, we performed rodent infestation and environmental surveys of 80 case households, in which resided at least one individual with Leptospira infection, and 109 control households. In the case-control study, signs of rodent infestation were identified in 78% and 42% of the households, respectively. Regression modeling identified the presence of R. norvegicus feces (OR, 4.95; 95% CI, 2.13–11.47), rodent burrows (2.80; 1.06–7.36), access to water (2.79; 1.28–6.09), and un-plastered walls (2.71; 1.21–6.04) as independent risk factors associated with Leptospira infection in a household. We developed a predictive model for infection, based on assigning scores to each of the rodent infestation risk factors. Receiver operating characteristic curve analysis found that the prediction score produced a good/excellent fit based on an area under the curve of 0.78 (0.71–0.84).

Conclusions/Significance

Our study found that a high proportion of slum households were infested with R. norvegicus and that rat infestation was significantly associated with the risk of Leptospira infection, indicating that high level transmission occurs among slum households. We developed an easily applicable prediction score based on rat infestation markers, which identified households with highest infection risk. The use of the prediction score in community-based screening may therefore be an effective risk stratification strategy for targeting control measures in slum settings of high leptospirosis transmission.  相似文献   

19.
BackgroundThe burden of human leptospirosis in Uganda is unknown. We estimated the seroprevalence of Leptospira antibodies, probable acute/recent leptospirosis, and risk factors for seropositivity in humans in rural Western Uganda.Conclusions/SignificanceThe 35% prevalence of Leptospira antibodies suggests that exposure to leptospirosis is common in rural Uganda, in particular the Nigeria serovar (Pyrogenes serogroup). Leptospirosis should be a diagnostic consideration in febrile illness and “smear-negative malaria” in rural East Africa.  相似文献   

20.
Pulmonary hemorrhage is an increasing cause of death of leptospirosis patients. Bacterial collagenase has been shown to be involved in lung hemorrhage induced by various infectious agents. According to Leptospira whole genome study, colA, a gene suggested to code for bacterial collagenase has been identified. We investigated colA gene expression in lung tissues of Leptospira infected hamsters. Golden Syrian Hamsters were injected intraperitoneally with Leptospira interrogans serovar Pyrogenes. The hamsters were sacrificed on days 3, 5 and 7 post-infection and lung tissues were collected for histological examination and RNA extraction. Lung pathologies including atelectasis and hemorrhage were observed. Expression of colA gene in lung tissues was demonstrated by both RT-PCR and real time PCR. In addition, ColA protein was cloned and the purified protein could react with sera from leptospirosis patients. Leptospira ColA protein may play a role in Leptospira survival or pathogenesis in vivo. Its reaction with leptospirosis sera suggests that this protein is immunogenic and could be another candidate for vaccine development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号