首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macrophages continuously exposed to lymphokines (LK) and target cells throughout a 48-hr cytotoxicity assay exhibit 3-fold more tumoricidal activity than do cells optimally treated with LK before addition of tumor cells. Increased cytotoxic activity induced by continuous LK treatment was not due to direct toxic effects of LK on tumor target cells or to alterations in target cell susceptibility to cytopathic effects of LK-activated macrophages. Moreover, sensitivities of responsive macrophages to LK activation signals and time courses for onset and loss of tumoricidal activity during continuous exposure or LK pulse were identical. Analysis of macrophage or LK dose responses and time courses for development of cytotoxicity each suggest that differences in tumoricidal activity between macrophages continuously exposed or pulsed with LK were quantitative: the number of cytotoxic events was increased 2.7 ± 0.2-fold (mean ± SEM for 11 experiments) during continuous LK treatment. Optimal levels of macrophage tumoricidal activity then occur only if effector cells, target cells and activation stimuli are simultaneously present for a defined time interval: tumor cells need not be present during the initial 2 to 3 hr of culture; LK can be removed after 8 hr with little or no loss of cytotoxic activity. However, removal of LK or target cells during the critical 4- to 8-hr interval decreased levels of cytotoxicity 3-fold. Thus, nonspecific effector function by LK-activated macrophages in controlled by both the physicochemical nature of the LK mediator and the time interval effector and target cells are exposed to LK.  相似文献   

2.
Purified splenic macrophage (M phi) from normal DBA/2J mice and mice bearing P815 tumors were examined for responsiveness to lymphokine (LK) preparations containing high concentrations of IFN-gamma. For both normal and tumor-bearing M phi, LK treatment induced morphologic changes and increased the percentage of Ia+ cells from 35 to 55%. Although neither population exhibited spontaneous cytotoxicity toward P815 targets, LK treatment induced considerable tumoricidal activity in tumor-bearing M phi (32 to 80% lysis) but only minimal activity in normal M phi (8 to 17% lysis). Subcutaneous injection of 1 X 10(6)P815 cells into DBA/2J led to progressive tumor growth and death of 100% of the recipients after 27 +/- 3 days. Injection of a 1:18 mixture of P815 with either LK-activated normal or tumor-bearing M phi caused tumor regression after 10 days, and prolonged life until 43 +/- 4 days with tumor-bearing M phi and 39 +/- 3 days with normal M phi. Untreated normal or tumor-bearing M phi were unable to cause the effect (30 +/- 2 days), and lymphocytes could not be substituted for M phi (25 +/- 3 days). In x-irradiated recipients, no effect of LK-activated M phi could be observed (control = 19 +/- 2 days; LK-activated tumor-bearing M phi = 21 +/- 3 days). In addition, administration of an admixture of LK-treated M phi and x-rayed tumor before challenge with viable P815 enabled the recipient to inhibit tumor growth and caused tumor necrosis with inflammatory cell infiltration of the tumor. These observations suggest that, in part, LK-activated M phi may interact in vivo with host-derived cellular components and enhance the immune reactivity of the host against the tumor.  相似文献   

3.
Lymphokine (LK)-activated macrophages are cytotoxic for multicellular larvae of the helminth parasite Schistosoma mansoni. Macrophage-mediated larval killing was found to be arginine dependent, as indicated by inhibition in the presence of exogenous arginase or the competitive inhibitor NG-monomethyl-L-arginine. Culture supernatant fluids from the larvicidal LK-activated macrophages contained nitrite, a product of activated macrophages derived by oxidation of arginine and implicated in the antitumor and antimicrobial effector function of these cells. Nitrite was not detectable in supernatant fluids obtained from nonactivated macrophages or from macrophages stimulated with LK in the presence of arginase or NG-monomethyl-L-arginine. Addition of excess iron or the reductant sodium dithionite to LK-activated macrophage cultures also inhibited larval killing in vitro, under conditions that have been shown by others to stabilize the activity of iron-containing enzymes involved in respiration. Nitrite production was not decreased under these conditions. These observations are consistent with the hypothesis that macrophage-mediated schistosomulum killing is caused, at least in part, by a mechanism proposed for tumor cytotoxicity, whereby production of reactive nitrogen intermediates triggers iron loss from critical target cell enzymes leading to lethal metabolic inhibition. In accordance, schistosomula were shown to be killed by inhibitors of mitochondrial respiration.  相似文献   

4.
Peritoneal-and pulmonary macrophages can be activated in vitro with lymphokines (LK) or IFN-gamma, without exogenous lipopolysaccharide, for fungicidal activity against several pathogenic fungi. However, neither the biochemical nor metabolic events of the activation process or of the effector phase have been defined. In the present work we sought to elucidate these events with time-course studies using inhibitors of protein synthesis as well as immunosuppressive agents. We found that protein synthesis inhibitors abrogated the activation process, because cycloheximide (CHX) (1-2 micrograms/ml) prevented activation of macrophages for fungicidal activity against Candida albicans, Blastomyces dermatitidis, and Paracoccidioides brasiliensis. Blocking of the activation process by CHX was not due to macrophage cytotoxicity, and CHX did not impair the ability of nonactivated macrophages to kill Candida parapsilosis. In kinetic studies we showed that activation of macrophages was induced in 4 hr of LK treatment and that CHX had no effect if added after this time. In contrast to CHX, therapeutic concentrations of hydrocortisone (HC), such as less than or equal to 5 micrograms/ml, or cyclosporin A (CsA), 5 micrograms/ml, did not significantly inhibit LK activation of macrophages for killing of fungi. In the effector phase, the fungicidal capacity of activated macrophages in short-term (less than or equal to 4 hr) killing assays could not be abrogated by CHX (5 micrograms/ml), HC (100 micrograms/ml), or CsA (10 micrograms/ml). These results demonstrate that the activation but not the effector mechanism of macrophages for fungicidal activity is blocked by inhibition of protein synthesis. In contrast, therapeutic concentrations of HC or CsA may not interfere with activation of macrophages or their killing mechanisms, thus providing a rationale for antifungal immunotherapy in certain clinical situations (e.g., infection in the immunosuppressed patient).  相似文献   

5.
Previous studies have shown that peritoneal murine macrophages activated in vivo and in vitro to a tumoricidal stage have a depressed rate of RNA synthesis. In attempting to clarify the differences in RNA metabolism between noncytotoxic and tumoricidal macrophages, we have studied the relative accumulation of various species of RNA in macrophages activated in vivo and in vitro with the use of agarose gel electrophoresis. Macrophages activated in vitro to a cytotoxic stage with supernatants containing lymphokines (LK) and traces of lipopolysaccharide (LPS) have an imbalanced accumulation of mature ribosomal RNA (rRNA), with a decreased accumulation of 28S rRNA compared to 18S rRNA. In contrast, macrophages primed in vitro with LK free of detectable endotoxins that exhibit suppressive rather than tumoricidal activity do not manifest a decreased 28S:18S rRNA ratio. The conclusion that the decreased 28S:18S rRNA ratio was associated with the activation of macrophages to a cytolytic stage was supported by the finding that cytotoxic macrophages activated in vivo by i.p. injection of Propionibacterium acnes (formerly designated C. parvum) also demonstrated a decreased accumulation of 28S comparable with that observed in in vitro-activated macrophages. Moreover, activated macrophages that lost their cytolytic activity upon prolonged in vitro culture had an augmented accumulation of 28S rRNA. These results provide the first direct evidence that the expression of cytolytic activity is associated with modulation of a specific class of RNA. The unbalanced accumulation of rRNA appears to be a late molecular event in the activation process occurring during the transition from primed to cytotoxic macrophages, because inflammatory and primed macrophages had normal rRNA accumulation. A model of macrophage activation accounting for these results is proposed.  相似文献   

6.
Expression of two distinct cytolytic mechanisms among murine CD4 subsets   总被引:5,自引:0,他引:5  
A TNF (TNF-alpha and TNF-beta)-sensitive target, L929, and two TNF-resistant targets, P815 and LK were used to compare the cytolytic activity among subsets of CD4+ (Th) clones. Cytolytic activity was induced with either Con A, CD3-mAb, or Ag-pulsed LK cells. Six Th1 clones are strongly cytolytic against all three targets. In contrast, Th2 clones are either noncytolytic or weakly cytolytic. Although there is an apparent correlation between TNF production, killing of L929 cells, and the killing of TNF-resistant targets, an anti-TNF serum (capable of neutralizing both TNF-alpha and TNF-beta) selectively inhibits CD4 clones to lyse L929 cells, whereas the lysis of P815 or LK cells was unaffected. The continuous presence of noncytotoxic levels of Actinomycin D (AcD) and cycloheximide, but not mitomycin C, cyclosporin A (CsA), or cholera toxin (ChT) inhibits the lysis of Ag-pulsed, Ia-bearing LK cells; indicating a requirement for de novo synthesis of RNA and protein for cytolytic activity. Although pretreatment with AcD, CsA, or ChT strongly inhibits production of IL-2, TNF and IFN-gamma, only clones pretreated with AcD lose cytolytic activity against Ag-pulsed, Ia-bearing LK cells. These observations support a model of TNF-independent killing of TNF-resistant targets. The TNF-independent cytolytic activity does not correlate with serine esterase activity released into media upon activation of CD4 clones. Moreover, the effects of metabolic inhibitors on serine esterase release do not correlate with their effects on cytolytic activity. Collectively, the data demonstrate that activated CD4 cells express two distinct cytolytic activities; a TNF (and IFN-gamma)-mediated cytotoxicity and a TNF (and IFN-gamma)-independent cytolytic activity. Both pathways require de novo synthesis of RNA and protein and appear to be independent of granule enzyme release. Only the TNF-independent cytolytic activity is resistant to CsA and ChT inhibition.  相似文献   

7.
We investigated the role of protein kinase C (PK-C) in the activation of cytotoxic peritoneal murine macrophages (M phi) by IFN-gamma or by IFN-beta. Two potent inhibitors of PK-C, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H-7) and retinal, were used. We found that both drugs inhibited in a dose-dependent manner the activation of cytotoxicity induced by IFN-beta, suggesting the requirement for intact PK-C activity in this process. In contrast, neither H-7 nor retinal inhibited the activation of cytotoxic M phi by IFN-gamma, indicating that IFN-gamma acts through a PK-C-independent pathway. The effectiveness of both drugs in inhibiting PK-C in intact M phi was evaluated by measuring the inhibition of induction of c-fos mRNA by L-alpha-1-oleoyl-2-acetoyl-sn-3-glycerol, a process that has been shown to be dependent on PK-C activation. We have found a strict correlation in the dose-dependent inhibition by both drugs of c-fos mRNA induction and activation of M phi by IFN-beta. These results indicate that different pathways of activation are triggered by IFN-gamma and IFN-beta, the former being independent from and the latter dependent on intact PK-C activity.  相似文献   

8.
M phi obtained directly from disaggregated murine Moloney sarcomas produced PGE2 and a hydroxy fatty acid derivative as the major products of arachidonic acid metabolism. M phi-immunoreactive PGE synthetic rates decreased substantially and cytotoxic activity was lost when freshly explanted tumor M phi were held in culture 24 hr. Such cultured M phi remained in a partially activated "primed" state, however, wherein the addition of minute (ng) amounts of bacterial lipopolysaccharide (LPS) returned cytolytic activity and PGE synthesis to original levels. Indomethacin-induced blockade of the M phi cyclooxygenase pathway inhibited PG synthesis by LPS-stimulated, primed M phi without affecting the return of cytolytic activity. We conclude, therefore, that the production of PG had no direct role in the mediation of tumor cell killing by activated M phi isolated from these neoplasms.  相似文献   

9.
The expression of cellular proteins was analyzed by two-dimensional gel electrophoresis during and after exposure of mouse macrophages to either mouse rIFN-gamma or natural MuIFN-beta sufficient to prime macrophages for tumor cell killing. The reversible inhibitor of protein synthesis, cycloheximide (CY), was included in some experiments during exposure to IFN. While it was present, CY suppressed protein synthesis by greater than 90%, but did not affect priming for tumor cell killing that was induced by either kind of IFN, as measured in cytotoxicity assays. Further analysis showed that, after CY and IFN were removed, protein synthesis recovered fully within 1 h. p47b, a protein that has been associated closely with the induction of the primed state in mouse macrophages, was then substantially expressed despite no new stimulation by IFN. Thus, macrophages in which protein synthesis had been reversibly inhibited delayed full processing of a signal delivered by IFN, until after protein synthesis had resumed. Such a delay in processing may explain how macrophages subsequently became activated, despite treatment with CY. The expression of the protein doublet, p71/73, was induced, regardless of which of three dissimilar agents (LPS, heat killed Listeria monocytogenes, poly I:C) was used to trigger the expression of cytolytic activity by primed macrophages. Therefore, the likelihood was increased that p71/73, expressed with p47b, is a valid phenotypic marker for fully activated, cytolytic macrophages. By contrast, p120, another protein that has been proposed as a marker of full activation in peritoneal macrophages, was expressed by bone marrow culture-derived macrophages regardless of whether or not they were cytolytic for tumor cells. It cannot be regarded as a reliable marker of macrophage activation in all circumstances, therefore.  相似文献   

10.
Adherent layers of macrophages (M phi-c) generated in vitro from splenic precursors inhibit lymphoproliferative responses to mitogen and to alloantigen without inhibiting the production of interleukin-2 (IL-2). Analysis of spleen cells stimulated for 48 hr in the presence of M phi-c indicated that both blastogenesis (increased cell mass) and expression of IL-2 receptors (7D4 determinants) were reduced. Analysis of BrdU incorporation (frequency of S-phase cells) and total cellular DNA revealed that the M phi-c inhibited the progression from G1 to S phase of cell cycle. The M phi-c not only inhibited the proliferative response to alloantigen but also prevented the generation of alloreactive cytotoxic T cells. The M phi-c were shown not to inhibit CTL responses by eliminating the stimulators or by inactivating precursors or inducing suppressors. The M phi-c were affecting the induction of CTL activity since the M phi-c did not affect the expression of cytolytic activity by activated CTL. The M phi-c did inhibit the proliferation of the activated CTL, suggesting that although cytolytic activity can be expressed in G1 phase of cell cycle, the activation of cytolytic activity in CTL-P may require a G1 to S phase transition. The cells recovered from 5-day MLC incubated in the presence of M phi-c were fully capable of generating a subsequent CTL response. This is in contrast to cells recovered from unstimulated cultures (no M phi-c) which have lost the ability to generate CTL responses. The M phi-c therefore prevent the generation of CTL responses in a totally reversible fashion, so as to allow activation and proliferation of CTL-P which have been removed from the influence of the M phi-c. These observations are discussed in the context of the currently hypothesized role of tissue macrophages in microenvironmental regulation.  相似文献   

11.
Macrophages in varying states of activation differ in their ability to perform antibody-dependent cellular cytotoxicity (ADCC) and antibody-independent macrophage-mediated tumor cytotoxicity (MTC). To define further the activation requirements for macrophages to perform various cytolytic functions, we stimulated peptone-elicited peritoneal macrophages, which are only poorly cytolytic, with one of a panel of cytokines and then quantified three distinct cytolytic capacities. The peptone-elicited macrophages, after stimulation with IFN-alpha/beta, IL-4, or TNF, had increased ability to perform both the rapid and slow variants of ADCC but not to perform MTC. Stimulation with high doses of IFN-gamma, however, increased the macrophages' ability to perform all three cytolytic functions. GM-CSF had no effects on any cytolytic capacity. The effects of IL-4, TNF, IFN-gamma, and IFN-alpha/beta on the macrophages' capacity for both forms of ADCC were dose-dependent. IFN-gamma and IFN-alpha/beta increased the macrophages' capacity for both variants of ADCC within 4 hr of treatment, whereas IL-4 and TNF did so only after prolonged treatment. These results suggest that three forms of macrophage cytolytic capacity can be enhanced by cytokine treatment but that the requirements for enhancing each of the three forms of macrophage cytolytic capacity differ.  相似文献   

12.
Antibody-dependent cellular cytotoxicity (ADCC) to tumor targets was studied using murine resident peritoneal macrophages and a macrophage cell line RAW264.10A, both having low inherent cytolytic activity. The target was 125I-labeled pre-B lymphoma 18-8. Pretreatment of both macrophage populations with 0.5 – 2 μM concentrations of the microtubule-stabilizing drug taxol greatly increased their antibody-dependent cytotoxicity with no stimulation of nonspecific killing. Taxol present only during the 18-hr cytolytic assays had no effect on target killing. Optimal killing activity was obtained by treating macrophages 2 days with taxol, similar to previously described cytokine stimulation of ADCC. This concentration completely blocked growth of RAW264 cells. Other microtubule inhibitors, lidocaine and colchicine, also augmented peritoneal and cell line macrophage ADCC at cytostatic concentrations. In contrast, the microfilament-disrupting agent, cytochalasin B, caused little or no stimulation of ADCC. These results show that microtubule reformation is not necessary for the development of cytotoxicity. Since microtubule inhibitors block lysosomal discharge, they may stimulate macrophage ADCC by causing accumulation of toxic molecules involved in cytotoxicity.  相似文献   

13.
We have used the RAW 264.7 macrophage (MO) cell line to study cAMPdPK isozymes during activation by lymphokine (LK) and lipopolysaccharide (LPS). Untreated cells were found to have two isozymes of cAMPdPK in their cytosol. PKI and PKII were differentiated based on the Mr of their regulatory subunits (RI, 45,500; and RII, 52,000, respectively) as determined by photoactivated incorporation of the cAMP analog 8-N3-[32P]cAMP. Loss of the RI subunit of PKI occurred in association with activation of the cell line by suboptimal concentrations of LK and LPS (1/40 dilution, 1 ng/ml) or high concentrations of LPS alone (10 ng/ml to 100 micrograms/ml). No modulation of the RII subunit of PKII was observed under these conditions. The loss of RI was dependent on the addition of a triggering signal to the MO. Treatment of RAW 264.7 cells with LK alone at dilutions from 1/10 to 1/1280 was not sufficient to cause a disappearance of the RI subunit from the cytosol or to induce antitumor activity. The addition of a suboptimal concentration of LPS after LK or a high dose of LPS alone was required for acquisition of cytolytic activity and loss of RI. The kinetics for the disappearance of RI from treated cells were found to be identical after activation with either LK and LPS or high concentrations of LPS alone. RI could no longer be detected in the cytosol 8 hr after the addition of activating agents. The antitumor activity of the RAW 264.7 cell line was transiently expressed after activation. Cells no longer exhibited tumoricidal activity 48 hr after the removal of activating agents. It was observed that the loss of cytolytic function was accompanied by the reexpression of RI in the cytosol. This study provides evidence that modulation of cAMPdPK isozymes occurs during activation, suggesting a potential mechanism for controlling the effects of cAMP on the MO.  相似文献   

14.
The effect of the macrophage growth and differentiation factor CSF-1 on the tumoricidal capacity of murine peritoneal exudate macrophages was investigated. Pretreatment of peptone-elicited macrophages 1 day with 300-1200 U/ml CSF-1 induced moderate killing and greatly stimulated lymphokine (LK)-induced killing of [3H]thymidine-labeled TU5 sarcoma cells to levels above that seen with fresh macrophages. Further addition of CSF-1 at Day 1 at the time of the tumor lysis assay promoted moderate increases in spontaneous and LK-induced activity. CSF-1 did not stimulate freshly harvested exudate macrophages to lyse TU5 targets in the presence or absence of lymphokine (LK) activators. Lipopolysaccharide (LPS) at 0.1-1000 ng/ml did not stimulate cytotoxicity, and the low endotoxin content and the use of polymyxin B and C3H/HeJ mice excluded a role for LPS in these experiments. Incubation of the macrophages with IFN and the myeloid growth factors IL-3 and GM-CSF did not stimulate tumoricidal activity. CSF-1 has been proposed as a therapeutic agent to restore myeloid cell numbers in induced (cancer chemotherapy, bone marrow transplantation, etc.) and natural aplastic anemias. These studies show that CSF-1 also may be useful in combination with LK activators to promote resistance to cancer in mature mononuclear cells. CSF-1 may have similar effects in LK-activated macrophages to enhance resistance to infectious diseases.  相似文献   

15.
In this study, we examined the possible role of TNF-alpha and lymphotoxin (TNF-beta) as cofactors of macrophage activation. The results demonstrate that both TNF were capable of enhancing the cytostatic and cytolytic activity of murine peritoneal macrophages against Eb lymphoma cells. The potentiation of tumor cytotoxicity became apparent when macrophages from DBA/2 mice were suboptimally activated by either a T cell clone-derived macrophage-activating factor or by IFN-gamma plus LPS. Neither TNF-alpha nor TNF-beta could induce tumor cytotoxicity in IFN-gamma-primed macrophages, indicating that TNF cannot replace LPS as a triggering signal of activation. In LPS-resistant C3H/HeJ macrophages, which were unresponsive to IFN-gamma plus LPS, a supplementation with TNF fully restored activation to tumor cytotoxicity. Furthermore, TNF-alpha potentiated a variety of other functions in low-level activated macrophages such as a lactate production and release of cytotoxic factors. At the same time, TNF-alpha produced a further down-regulation of pinocytosis, tumor cell binding and RNA synthesis observed in activated macrophages. These data demonstrate new activities for both TNF-alpha and TNF-beta as helper factors that facilitate macrophage activation. In particular, the macrophage product TNF-alpha may serve as an autocrine signal to potentiate those macrophage functions that were insufficiently activated by lymphokines.  相似文献   

16.
Macrophages treated with the soluble products of Ag-stimulated spleen cells from bacillus Calmette-Guérin-infected C3H/HeN mice (lymphokines) (LK] before infection developed the capacity to resist infection with obligately intracellular amastigotes of the protozoan parasite, Leishmania major: 40 to 60% fewer cells in LK-treated cultures were infected 2 h after exposure to parasites than cells in medium-treated controls. Macrophages treated with LK depleted of IFN-gamma failed to acquire this activated macrophage effector activity. Paradoxically, IFN-gamma by itself was also not effective. Activity of the ineffective, IFN-gamma-depleted LK was restored, however, by addition of 10 to 100 U/ml IFN-gamma, itself inactive. The induction of this antimicrobial activity was the result of the interaction of macrophages and several molecularly distinct LK, and IFN-gamma was a necessary but insufficient activation signal. The activation of macrophage resistance to infection by LK was 1) not signal sequence dependent, 2) absent in cells treated with the second signal at lower (4 degrees C) temperatures and in the presence of protein synthesis inhibitors, and 3) induced by the cooperation of IFN-gamma and LK of m.w. 45,000 and 33,000. These factors in LK constituted more than 85% total LK activity for induction of resistance to infection. A minor activity in LK, of m.w. 20,000, could apparently induce this effector activity in the absence of IFN-gamma: this activity was less than 15% of total LK activity.  相似文献   

17.
Corynebacterium parvum-activated macrophages (M phi), purified by adherence, were cytotoxic for B16 melanoma cells maintained in vitro. Pretreatment of the melanoma cells for 18 hr with interferon-alpha/beta or -gamma (IFN-alpha/beta or -gamma) caused a reduced susceptibility of the B16 cells to M phi-mediated cytotoxicity. The IFN-induced protective effect of B16 cells from cytotoxic M phi was found to be dose dependent. In addition, IFN-gamma was more protective than IFN-alpha/beta. The protective effect observed with partially purified IFN was reproduced by using highly purified IFN-alpha/beta or recombinant IFN-gamma. Monoclonal antibodies to IFN-gamma neutralized the protective effect provided by IFN-gamma. These results show that the susceptibility of a tumor cell line to killing by activated M phi can be altered by IFN pretreatment.  相似文献   

18.
T J Herzog  J L Collin 《Cytokine》1992,4(3):214-220
The cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin 1 alpha (IL-1 alpha) share many properties, including in-vitro cytotoxicity. Because cytotoxicity can result from either cytolytic or cytostatic activity, and because differentiating between these activities may have clinical relevance, we determined the cytostatic and cytolytic activity of TNF-alpha and IL-1 alpha for the human cell lines ME-180, SiHa (cervical carcinomas) and A375 (melanoma). Results of these analyses showed that IL-1 alpha mediated cytostatic activity only for A375 cells. IL-1 alpha was not cytolytic in the presence or absence of protein synthesis inhibitors. TNF-alpha was cytostatic for A375 and ME-180 cells, and although TNF-alpha was not cytolytic in the absence of protein synthesis inhibitors, it was cytolytic in the presence of protein synthesis inhibitors. These results suggest that the difference between the cytolytic and cytostatic activities of IL-1 alpha and TNF-alpha may have therapeutic implications for the use of these biological response modifiers in the treatment of gynecological malignancies.  相似文献   

19.
Modulation of protein expression during interferon-gamma (IFN-gamma)-lipopolysaccharide (LPS)-mediated macrophage tumoricidal activation has been examined by metabolic radiolabeling of various murine peritoneal macrophage populations with [35S]methionine followed by SDS-PAGE analysis. Although both IFN-gamma and LPS are capable of stimulating the expression of several proteins when used independently, combined treatment induced the enhanced or de novo expression of a 120,000 dalton polypeptide. The expression of this protein was synergistically regulated by both IFN-gamma and LPS in a manner strongly reminiscent of the functional synergism that these two agents exhibit with respect to induction of tumoricidal activity. p120 expression could be seen first at approximately 3 hr after the addition of both agents, reached optimal expression by 6 hr, and maintained elevated synthesis for up to 24 hr. This time course corresponds closely to that seen for the acquisition of tumoricidal competence. Macrophages elicited in the primed state of activity in vivo with methyl vinyl ether co-polymer II (MVE-II) did not express p120, but could be induced to do so when treated with low doses of LPS. Under similar conditions, MVE-II-elicited cells also acquire tumoricidal activity. Macrophages obtained from mice chronically infected with bacillus Calmette-Guerin constitutively expressed both p120 and cytolytic activity. If such macrophages were cultured for 24 hr, the expression of both events decayed and was lost, but could be restored by treatment with low doses of LPS. Thus the data support a strong correlation between the expression by macrophages of a novel 120,000 dalton protein and the expression of tumor cytotoxicity.  相似文献   

20.
Macrophages are pivotal cells in interactions of man and leishmania. Leishmanial disease results from intracellular infection of macrophages: parasitized cells are seen in smears or biopsy specimens of lesions; macrophages cultured in vitro support replication of parasites. Paradoxically, parasite destruction is also mediated by macrophages, which become highly cytotoxic after exposure to immune lymphocytes or their lymphokine (LK) products. The precise molecular mechanisms by which lymphocytes or LK induce macrophage activation for leishmanicidal activity, however, are not yet known. We analyzed interactions of leishmania amastigotes with human monocytes cultured in vitro as a nonadherent cell pellet. Leishmania donovani and L. major replicated in freshly isolated monocytes. Monocytes treated with greater than 200 IU/ml of the LK, human Interferon-gamma (IFN-gamma), destroyed tumor cells and L. donovani, but not L. major. Phorbol myristate acetate, endotoxic bacterial lipopolysaccharide, and recombinant human IFN-alpha and IFN-beta did not induce cytotoxicity. The time course for induction of cytotoxicity contrasted sharply with that of previously described monocyte antileishmanial activity: IFN-gamma induced cytotoxicity even when added after infection with L. donovani; induction of cytotoxicity did not require that IFN-gamma be present throughout the period of culture after infection: a 30-min preinfection pulse of IFN-gamma was sufficient to induce 70% of maximal activity; and freshly isolated monocytes and cells cultured for up to 4 days in vitro prior to infection and IFN-gamma treatment were equally responsive to IFN-gamma. These studies provide convincing evidence for intracellular cytotoxicity for L. donovani by freshly isolated human monocytes. This system provides an important base for further analysis of induction and expression of cytotoxic mechanisms against leishmania and other intracellular organisms that cause human disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号