首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transgenic mice overexpressing IFN-γ in the epidermis develop an inflammatory skin disease resembling cutaneous lupus erythematosus shortly after birth. By 3 months of age, most female transgenics develop a lupus-like syndrome characterised by production of IgG anti-dsDNA, antihistone and antinucleosome autoantibodies. The autoantibodies are nephritogenic, with one-third of females developing a severe immune complex mediated glomerulonephritis. Analysis of these transgenics suggests that pathogenic autoantibodies arise via an antigen-driven T-cell-dependent mechanism with apoptotic keratinocytes acting as a potential source of autoantigen. The mechanism of autoantibody production in IFN-γ transgenics may be relevant to human lupus and is consistent with a central role for cutaneous T cells in the pathogenesis of systemic lupus erythematosus in man.  相似文献   

2.
Autoimmune diseases are characterized by various circulating autoantibodies, especially antinuclear antibodies (ANA). It has been a long-standing issue as to whether and/or how ANA interact with epidermal cells to produce skin lesions. Of these ANA, the anti-SS-A/Ro antibody is the most closely associated with photosensitivity in patients with systemic lupus erythematosus (SLE) and its subgroups, including subacute cutaneous lupus erythematosus (SCLE) and neonatal lupus erythematosus (NLE). SS-A/Ro antigens are present in the nucleus and cytoplasm, and interestingly, ultraviolet B (UVB) light translocates these antigens to the surface of the cultured keratinocytes. Thus, anti-SS-A/Ro antibodies in the sera can bind to the relevant antigens expressed on the UVB-irradiated keratinocyte surface, and have been speculated to be an important inducer of antibody-dependent keratinocyte damage. This interaction between the anti-SS-A/Ro antibodies and UVB-irradiated keratinocytes may induce the skin lesions through a cytotoxic mechanism. This review will focus on the involvement of antibody-dependent cellular cytotoxicity in the pathogenesis of the skin lesions observed in photosensitive cutaneous lupus erythematosus.  相似文献   

3.
The sunlight was one of the first agents recognized to be carcinogenic for humans. There is convincing evidence from epidemiologic studies that exposure to solar radiation is the major cause of cutaneous melanoma in light-pigmented populations and plays a role in the increasing incidence of this malignancy. The molecular mechanisms by which UV radiation exerts its varied effects are not completely understood, however, it is considered that UVA and UVB are equally critical players in melanoma formation. Whereas UVA can indirectly damage DNA through the formation of reactive oxygen radicals, UVB can directly damage DNA causing the apoptosis of keratinocytes by forming the sunburn cells. Besides action through mutations in critical regulatory genes, UV radiation may promote cancer through indirect mechanisms, e.g. immunosuppression and dysregulation of growth factors. The carcinogenic process probably involves multiple sequential steps, some, but not all of which involve alterations in DNA structure.  相似文献   

4.
5.
Sunlight (UVB) triggers cutaneous lupus erythematosus (CLE) and systemic lupus through an unknown mechanism. We tested the hypothesis that UVB triggers CLE through a CSF-1-dependent, macrophage (M?)-mediated mechanism in MRL-Fas(lpr) mice. By constructing mutant MRL-Fas(lpr) strains expressing varying levels of CSF-1 (high, intermediate, none), and use of an ex vivo gene transfer to deliver CSF-1 intradermally, we determined that CSF-1 induces CLE in lupus-susceptible MRL-Fas(lpr) mice, but not in lupus-resistant BALB/c mice. UVB incites an increase in M?s, apoptosis in the skin, and CLE in MRL-Fas(lpr), but not in CSF-1-deficient MRL-Fas(lpr) mice. Furthermore, UVB did not induce CLE in BALB/c mice. Probing further, UVB stimulates CSF-1 expression by keratinocytes leading to recruitment and activation of M?s that, in turn, release mediators, which induce apoptosis in keratinocytes. Thus, sunlight triggers a CSF-1-dependent, M?-mediated destructive inflammation in the skin leading to CLE in lupus-susceptible MRL-Fas(lpr) but not lupus-resistant BALB/c mice. Taken together, CSF-1 is envisioned as the match and lupus susceptibility as the tinder leading to CLE.  相似文献   

6.
This article reviews many of the complex events that occur after cutaneous ultraviolet (UV) exposure. The inflammatory changes of acute exposure of the skin include erythema (sunburn), the production of inflammatory mediators, alteration of vascular responses and an inflammatory cell infiltrate. Damage to proteins and DNA accumulates within skin cells and characteristic morphological changes occur in keratinocytes and other skin cells. When a cell becomes damaged irreparably by UV exposure, cell death follows via apoptotic mechanisms. Alterations in cutaneous and systemic immunity occur as a result of the UV-induced inflammation and damage, including changes in the production of cytokines by keratinocytes and other skin-associated cells, alteration of adhesion molecule expression and the loss of APC function within the skin. These changes lead to the generation of suppressor T cells, the induction of antigen-specific immunosuppression and a lowering of cell-mediated immunity. These events impair the immune system's capacity to reject highly antigenic skin cancers. This review gives an overview of the acute inflammatory and immunological events associated with cutaneous UV exposure, which are important to consider before dealing with the complex interactions that occur with chronic UV exposure, leading to photocarcinogenesis.  相似文献   

7.
Acute exposure of human skin to the ultraviolet radiation (UVR) in sunlight results in the sunburn response. This is mediated in part by pro-inflammatory eicosanoids and other bioactive lipids, which are in turn produced via mechanisms including UVR-induction of oxidative stress, cell signalling and gene expression. Sunburn is a self-limiting inflammation offering a convenient and accessible system for the study of human cutaneous lipid metabolism. Recent lipidomic applications have revealed that a wider diversity of eicosanoids may be involved in the sunburn response than previously appreciated. This article reviews the effects of UVR on cutaneous lipids and examines the contribution of bioactive lipid mediators in the development of sunburn. Since human skin is an active site of polyunsaturated fatty acid (PUFA) metabolism, and these macronutrients can influence the production of eicosanoids/bioactive lipids, as well as modulate cell signalling, gene expression and oxidative stress, the application of PUFA as potential photoprotective agents is also considered.  相似文献   

8.
Photosensitivity in childhood is caused by a diverse group of diseases. A specific sensitivity of a child's skin to ultraviolet light is often the first manifestation or a clinical symptom of photodermatosis. It might indicate a serious underlying systemic disease such as lupus erythematosus or dermatomyositis, or a rare group of genetic skin disorders like Xeroderma pigmentosum, Cockayne syndrome, Trichothyodystrophy, Bloom syndrome, Rothmund-Thomson and Kindler syndrome as well as metabolic disorders and cutaneous porphyria. Photosensitivity secondary to topical or systemic agents may also cause photosensitivity in children. Early recognition and prompt diagnosis may prevent complications associated with unprotected exposure to sunlight and avoid actinic injuries that can lead to malignant skin changes.  相似文献   

9.
Exposure of the skin to ultraviolet radiation (UVR) can lead to deleterious effects such as sunburn, photoaging, and the development of skin cancer. UVR has also been shown to reduce local and systemic immune responses in humans and animals. In the recent past it has become clear that neuropeptides mediate some of the effects of UVR-induced immunosuppression. Among the neuropeptides released from cutaneous nerves after exposure to UVR, calcitonin gene-related peptide (CGRP) has been examined most extensively. It appears to lead to a reduction of contact hypersensitivity by inducing mast cells to degranulate and thus release tumor necrosis factor alpha (TNF-alpha) and, most likely, interleukin (IL)-10. Nitric oxide, which is coreleased with CGRP, seems to also play a role in immunosuppression through a yet undiscovered mechanism of action, while substance P may have counterregulatory effects. New evidence suggests that the release of neuropeptides from cutaneous sensory c-fibers after UVR is induced by keratinocyte-derived nerve growth factor. UVR can also induce epidermal and some dermal cells, such as melanocytes, keratinocytes, and dermal microvascular epithelial cells, to produce proopiomelanocortin (POMC) and its derivatives. The POMC product alpha-melanocyte-stimulating hormone (alpha-MSH) has been implicated in suppression of contact hypersensitivity and induction of hapten-specific tolerance, most likely by inducing keratinocytes and monocytes to produce the anti-inflammatory cytokine IL-10. Other POMC derivatives have not yet been investigated with regard to a possible role in UVR-induced effects on immunity.  相似文献   

10.
A strong association between anti-SS-A/Ro and anti-SS-B/La antibodies and skin lesions has been well documented in subacute cutaneous lupus erythematosus and neonatal lupus erythematosis in which 70 to 80% of patients are female. In order to better understand the mechanisms of the influence of sex hormones on cutaneous lupus, we designed immunopathological in vitro experiments to evaluate the effects of estradiol and other sex steroids on the binding of SS-A/Ro- and SS-B/La-specific antibodies to cultured human keratinocytes from neonates. Cultured human keratinocytes incubated with antisera specific for SS-A/Ro or SS-B/La Ag were fixed with either acetone or paraformaldehyde and then analyzed in indirect immunofluorescent assays or by FACS analysis to detect cell surface IgG binding as an indirect measure of SS-A/Ro and SS-B/La Ag expression on the cell surface of keratinocytes. Estradiol (10(-5) to 10(-7) M) augmented binding of antiserum probes on the surface of cultured keratinocytes, with 10(-7) M estradiol showing the highest induction of cell surface binding of antisera specific for SS-A/Ro plus SS-B/La Ag (24.5% of cells were positive). In contrast, dihydrotestosterone, testosterone, and progesterone showed no augmentation. The augmentation by estradiol was partially inhibited by the antiestrogen nafoxidine. Estradiol augmented the relative incidence and absolute number of small or cuboidal cells binding antibodies specific for SS-A/Ro and SS-B/La Ag, whereas the number and incidence of larger differentiated cells binding anti-SS-A/Ro and anti-SS-B/La decreased significantly in cell cultures stimulated with estradiol. Flow cytometric analysis utilizing monospecific anti-SS-A/Ro or anti-SS-B/La sera showed that estradiol induced binding of anti-SS-A/Ro in 13.1% of cultured keratinocytes, of anti-SS-A/La in 14.4%, and of sera specific for both Ag in 21.4%. This direct association between estradiol and the augmentation of binding to the cell surface of human keratinocytes of IgG from antisera specific for SS-A/Ro and SS-B/La Ag may be a trigger factor of immunologic damage in lupus and may be important in the different sex rates observed in skin manifestation of subacute cutaneous and neonatal lupus erythematosis.  相似文献   

11.
The incidence of squamous cell carcinoma of the skin is rising worldwide for decades. Chronic exposure to sunlight is the most important environmental risk factor for this type of skin cancer. This is predominantly due to the DNA damaging effect of ultraviolet-B (UVB) in sunlight. UVB induces also sunburn cells, i.e. apoptotic keratinocytes, which is a crucial protective mechanism against the carcinogenic effects of UVB irradiation. This process is regulated by a wide range of molecular determinants involved in the balance between pro- and anti-apoptotic pathways. Growing evidence suggests that the deregulation of this balance by chronic UVB irradiation, contributes to the development of skin cancer. This review gives a brief summary of major known pathways involved in the regulation of keratinocyte survival and cell death upon UVB damage and discusses the contribution of the deregulation of these cascades to photocarcinogenesis.  相似文献   

12.
T helper 17 (Th17) cells are characterized by the secretion of IL-17, a proinflammatory cytokine. They represent a newly described T helper subpopulation that is distinct from Th1 and Th2 lineages. Because of their pleiotropic activity on fibroblasts, keratinocytes, endothelial cells, neutrophils and memory T cells, Th17 cells are thought to be crucial in mediating tissue inflammation and autoimmunity. Autoimmune diseases were classically considered as Th1-mediated disorders such as rheumatoid arthritis or mixed Th1/Th2 diseases such as inflammatory bowel diseases, systemic lupus erythematosus, bullous diseases, but new evidence suggests the deep involvement of Th17 cells in their pathogenesis that, potentially, may address a selective therapeutic approach targeting the IL23/Th17 pathway. This review summarizes the current knowledge of the pathogenic contribution of Th17 cells in select cutaneous autoimmune disorders, including lupus erythematosus, scleroderma, dermatomyositis, bullous pemphigoid and pemphigus vulgaris.  相似文献   

13.
The lupus anticoagulant was found in the plasma of 31 of 60 patients with systemic lupus erythematosus and other connective tissue disorders (mixed connective tissue disease, systemic vasculitis, polyarteritis nodosa, primary sicca syndrome, discoid lupus, Behcet''s syndrome, and systemic sclerosis). Strong associations were found with biological false positive seroreaction for syphilis and thrombocytopenia. The most striking association, however, was with the high prevalence of thrombosis. This tendency to thrombosis was independent of disease activity of systemic lupus erythematosus. The lupus anticoagulant appears to be a useful marker for a subset of patients with systemic lupus erythematosus at risk for the development of thromboembolic complications.  相似文献   

14.
Patients with the systemic autoimmune diseases Sjögrens's syndrome and systemic lupus erythematosus often have autoantibodies against the intracellular protein Ro52. Ro52 is an E3 ligase dependent on the ubiquitin conjugation enzymes UBE2D1 and UBE2E1. While Ro52 and UBE2D1 are cytoplasmic proteins, UBE2E1 is localized to the nucleus. Here, we investigate how domains of human Ro52 regulate its intracellular localization. By expressing fluorescently labeled Ro52 and Ro52 mutants in HeLa cells, an intact coiled-coil domain was found to be necessary for the cytoplasmic localization of Ro52. The amino acids 381-470 of the B30.2 region were essential for translocation into the nucleus. Furthermore, after exposure of HeLa cells to the inflammatory mediator nitric oxide (NO), Ro52 translocated to the nucleus. A nuclear localization of Ro52 in inflamed tissue expressing inducible NO synthetase (iNOS) from cutaneous lupus patients was observed by immunohistochemistry and verified in NO-treated cultures of patient-derived primary keratinocytes. Our results show that the localization of Ro52 is regulated by endogenous sequences, and that nuclear translocation is induced by an inflammatory mediator. This suggests that Ro52 has both cytoplasmic and nuclear substrates, and that Ro52 mediates ubiquitination through UBE2D1 in the cytoplasm and through UBE2E1 in the nucleus.  相似文献   

15.

Introduction  

Several studies have reported that TNFα is substantially increased within skin lesions of patients with discoid lupus erythematosus (DLE), subacute cutaneous lupus erythematosus (SCLE) and dermatomyositis (DM) compared to controls. Elevated TNFα has been reported in the sera of some patients with systemic lupus erythematosus, DLE and SCLE, but not in the sera of patients with DM. Because of the key pathogenic role of autoimmunity in these diseases, in this study we sought to evaluate TNFα production by a readily available source of immune cells (namely, peripheral blood mononuclear cells (PBMCs)) taken from controls and from patients with cutaneous lupus or DM.  相似文献   

16.
Sunburn is a physiological disorder of apples and other fruit species caused by excess solar radiation. Damage occurs in practically all growing regions of the world, causing severe crop loss every year. Direct factors required for induction of the three currently-known types of sunburn (i.e., sunburn necrosis, sunburn browning, and photooxidative sunburn) include excess radiant heating and/or exposure to excess sunlight. Several other factors (e.g., relative humidity, wind velocity, acclimation of fruit, and cultural management practices), which alone cannot induce sunburn damage, indirectly influence the induction of sunburn by interacting with the direct factors to influence the appearance and severity of the symptoms. Sunburn affects apple fruit at many levels; it causes structural and morphological changes, alters pigment composition, influences adaptive mechanisms, impairs photosynthesis, and consequently decreases fruit quality. Fruits employ multiple physiological and biochemical mechanisms as complex defense systems to minimize damage. Photoprotective pigments, antioxidant enzymes and metabolites, heat-shock proteins, and the xanthophyll cycle help mitigate damage, but are often inadequate under field conditions to fully protect from sunburn. Quality loss significantly affects postharvest behavior, marketing and consumer acceptance of fruit. Internal fruit quality (e.g., firmness, soluble solids concentration, and titratable acidity) is affected by sunburn, and changes in these traits continue during cold storage. Sunburn-related disorders (e.g., sunburn scald in ‘Granny Smith’ and ‘Fuji’ stain) can appear in cold storage. There are several methods with various modes of action (e.g., climate ameliorating techniques, and sunburn suppressants) available to growers to decrease sunburn under field conditions. At the end of this review, the potential impact of a changing climate on sunburn incidence is considered, as both UV-B radiation and temperature are projected to change. Finally, several topics that need further research are discussed.  相似文献   

17.
Diabetic patients are at high risk of developing delayed cutaneous wound healing. Adiponectin plays a pivotal role in the pathogenesis of diabetes and is considered to be involved in various pathological conditions associated with diabetes; however, its role in wound repair is unknown. In this study, we elucidated the involvement of adiponectin in cutaneous wound healing in vitro and in vivo. Normal human keratinocytes expressed adiponectin receptors, and adiponectin enhanced proliferation and migration of keratinocytes in vitro. This proliferative and migratory effect of adiponectin was mediated via AdipoR1/AdipoR2 and the ERK signaling pathway. Consistent with in vitro results, wound closure was significantly delayed in adiponectin-deficient mice compared with wild-type mice, and more importantly, keratinocyte proliferation and migration during wound repair were also impaired in adiponectin-deficient mice. Furthermore, both systemic and topical administration of adiponectin ameliorated impaired wound healing in adiponectin-deficient and diabetic db/db mice, respectively. Collectively, these results indicate that adiponectin is a potent mediator in the regulation of cutaneous wound healing. We propose that upregulation of systemic and/or local adiponectin levels is a potential and very promising therapeutic approach for dealing with diabetic wounds.  相似文献   

18.
19.
Apoptosis plays a critical role in the development and progression of ultraviolet-induced skin cancers. In particular, Fas and Fas ligand (FasL) interactions are known to control the development of sunburn cells or apoptotic keratinocytes in the UV-exposed epidermis. In the absence of functional Fas/FasL signaling, UV-induced apoptosis is diminished and mutations rapidly accumulate. UV-induced suppression of host immunity, a process regulating skin cancer outgrowth, is also controlled through Fas/FasL interactions. Other death receptors, such as the receptor for tumor necrosis factor, may also contribute to UV-induced carcinogenesis and progression. Understanding the involvement of cell death in cancers caused by exposure to sunlight may provide novel approaches for prevention and therapy of these ever-increasing malignancies.  相似文献   

20.
Abstract

Ultraviolet radiation (UVR) present in sunlight is a major environmental factor capable of affecting human health and well being. The organ primarily affected by UVR is the skin, which is composed of a variety of different cell types. Here, UVR is needed for production of active vitamin D as well as producing undesirable effects such as sunburn, premature cutaneous photoaging, and promoting skin cancer development. Depending on the radiation dose, UVR influences virtually every cutaneous cell type investigated differently. Since the end of the nineteenth century, sun exposure has been known to induce skin cancer, which is now the human malignancy with the most rapidly increasing incidence. In several experimental models, mid-range UVR has been demonstrated to be the major cause of UV-induced cutaneous tumors. The stratospheric ozone layer protecting the terrestrial surface from higher quantum energy solar radiation is being damaged by industrial activities resulting in the possibility of increased UVR exposure in the future. Investigations in the field of experimental dermatology have shown that within the skin an immunosurveillance system exists that may be able to detect incipient neoplasms and to elicit a host responses against it. This article reviews the literature on studies designed to investigate the effects of UVR on cutaneous cellular components, with special focus on the immune system within the skin and the development of UV-induced cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号