首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies of dinosaur teeth have focused primarily on external crown morphology and thus, use shed or in situ tooth crowns, and are limited to the enamel and dentine dental tissues. As a result, the full suites of periodontal tissues that attach teeth to the jaws remain poorly documented, particularly in early dinosaurs. These tissues are an integral part of the tooth and thus essential to a more complete understanding of dental anatomy, development, and evolution in dinosaurs. To identify the tooth attachment tissues in early dinosaurs, histological thin sections were prepared from the maxilla and dentary of a partial skull of the early theropod Coelophysis bauri from the Upper Triassic (Rhaetian‐ 209–201 Ma) Whitaker Quarry, New Mexico, USA. As one of the phylogenetically and geologically oldest dinosaurs, it is an ideal candidate for examining dental tissues near the base of the dinosaurian clade. The teeth of C. bauri exhibited a fibrous tooth attachment in which the teeth possessed five tissues: enamel, dentine, cementum, periodontal ligament (PDL), and alveolar bone. Our findings, coupled with those of more recent studies of ornithischian teeth, indicate that a tripartite periodontium, similar to that of crocodilians and mammals, is the plesiomorphic condition for dinosaurs. The occurrence of a tripartite periodontium in dinosaurs adds to the growing consensus that the presence of these tissues is the plesiomorphic condition for the major amniote clades. Furthermore, this study establishes the relative timing of tissue development and growth directions of periodontal tissues and provides the first comparative framework for future studies of dinosaur periodontal development, tooth replacement, and histology. J. Morphol. 277:916–924, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

2.
The Late-Triassic-dinosaur generic nameCoelophysis Cope 1889 (type species C.bauri [Cope 1887]) is a nomen dubium because the lectotype of C.bauri, AMNH 2722, is four sacral vertebrae and a pubic process of the ilium that are not diagnostic. Dinosaur specimens from the famous Whitaker (“Coelophysis”) quarry in the Rock Point Member of the Chinle Formation at Ghost Ranch, New Mexico thus lack a valid name. We create a new genus and species name,Rioarribasaurus colberti, for these specimens.  相似文献   

3.
The oldest theropod dinosaurs are known from the Carnian of Argentina and Brazil. However, the evolutionary diversification of this group after its initial radiation but prior to the Triassic-Jurassic boundary is still poorly understood because of a sparse fossil record near that boundary. Here, we report on a new basal theropod, Daemonosaurus chauliodus gen. et sp. nov., from the latest Triassic 'siltstone member' of the Chinle Formation of the Coelophysis Quarry at Ghost Ranch, New Mexico. Based on a comprehensive phylogenetic analysis, Daemonosaurus is more closely related to coeval neotheropods (e.g. Coelophysis bauri) than to Herrerasauridae and Eoraptor. The skeletal structure of Daemonosaurus and the recently discovered Tawa bridge a morphological gap between Eoraptor and Herrerasauridae on one hand and neotheropods on the other, providing additional support for the theropod affinities of both Eoraptor and Herrerasauridae and demonstrating that lineages from the initial radiation of Dinosauria persisted until the end of the Triassic. Various features of the skull of Daemonosaurus, including the procumbent dentary and premaxillary teeth and greatly enlarged premaxillary and anterior maxillary teeth, clearly set this taxon apart from coeval neotheropods and demonstrate unexpected disparity in cranial shape among theropod dinosaurs just prior to the end of the Triassic.  相似文献   

4.
The furcula is a structure formed by the midline fusion of the clavicles. This is the element which is unique to theropods and is important for understanding the link between birds and other theropods. New specimens from basal theropods suggest that the furcula appeared very early in theropod history. We review furcula development, function, and morphology, as well as the anatomical terminology applied to it. Furcular morphology is highly variable in crown‐group avians but is rather conserved among nonavian theropods. Here we review, or describe for the first time, the furculae in many nonavian theropods. Furculae occur in nearly all major clades of theropods, as shown by new theropod specimens from the Early Cretaceous of China and a close inspection of previously collected specimens. Informative phylogenetic characters pertaining to the furcula occur throughout Theropoda, though care should betake to consider taphonomic effects when describing furcular morphology. J. Morphol., 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Invertebrate trace fossils are reported from the Late Triassic Chinle Formation at Ghost Ranch, New Mexico, for the first time. They occur in beds higher in the section than the Coelophysis Quarry. Six ichnotaxa are recognized: Steinichnus milfordensis, Planolites montanus, Palaeophycus tubularis, Taenidium serpentium, ?Arenicolites sp. and Skolithos sp. This ichnofauna is consistent with the Scoyenia ichnofacies, considered typical of lake margins in semiarid to arid regions.  相似文献   

6.
Hui CA 《Journal of morphology》2002,251(3):284-293
This study examined furcula (wishbone) shape relative to flight requirements. The furculae from 53 museum specimens in eight orders were measured: 1) three-dimensional shape (SR) as indicated by the ratio of the direct distance between the synostosis interclavicularis and the ligamentous attachment of one of its clavicles to the actual length of the clavicle between those same two points, and 2) curvature within the primary plane (LR) as indicated by the ratio of the length of the clavicle to the sum of the orthogonal distances between the same points using a projected image. Canonical discriminant analysis of these ratios placed the individuals into a) one of four general flight categories and b) one of eight taxonomic orders. The four flight categories were defined as: i) soaring with no flapping, ii) flapping with no soaring, iii) subaqueous (i.e., all wingbeats taking place under water), and iv) partial subaqueous (i.e., wingbeats used for both aerial and submerged flapping). The error rate for placement of the specimens in flight categories was only 26.4%, about half of the error rate for placement in taxonomic orders (51.3%). Subaqueous fliers (penguins, great auks) have furculae that are the most V-shaped. Partial subaqueous fliers (alcids, storm petrels) have furculae that are more U-shaped than the subaqueous fliers but more V-shaped than the aerial flapping fliers. The partial subaqueous fliers have furculae that are also the most anteriorly curved, possibly increasing protraction capability by changing the angle of applied force and increasing attachment area for the origin of the sternobrachialis pectoralis. The increased protraction capability can counteract profile drag, which is greater in water than in air due to the greater density of water. Soaring birds have furculae that are more U-shaped or circular than those of flapping birds and have the smallest range of variation. These results indicate that the shape of the furcula is functionally related to general differences in flight requirements and may be used to infer relationships of these requirements among birds.  相似文献   

7.
Direct evidence of prey choice in carnivorous dinosaurs is rare in the fossil record. The most celebrated example pertains to purported stomach contents in the carnivorous dinosaur Coelophysis bauri, which besides revealing prey choice, also points to cannibalistic behaviour as being commonplace (Colbert 1989, 1995). Here, we test this hypothesis by conducting the first comprehensive anatomical and histological examination of the famed Coelophysis 'cannibals'. The results unequivocally show that the gut contents derive from early crocodylomorphs rather than juveniles of Coelophysis. These findings suggest that this taxon is not cannibalistic and bring into question the commonality of this behaviour among non-avian dinosaurs.  相似文献   

8.
Dinosaur tracks and swimming traces have been discovered at three localities in the latest Albian Sarten Member of the Mojado Formation, Bisbee Group (= “Anapra Sandstone”), at Cerro de Cristo Rey in Sunland Park, southernmost Dona Ana County, New Mexico. These localities preserve footprints of ornithopod (Caririchnium) and theropod (Magnoavipes) dinosaurs, ?reptilian swimming traces and possible tracks of an ankylosaurian dinosaur. The Sarten Member is of the latest Albian age, so the Cerro de Cristo Rey tracks are slightly younger than the well-known late Albian tracksites of northeastern New Mexico. At Cerro de Cristo Rey, the dominance of ornithopod tracks and absence of sauropod tracks fit regional patterns of late Albian-early Cenomanian track distribution consistent with North American extirpation of sauropods before the end of Albian time. The deltaic/coastal plain depositional setting of the Sarten Member is also remarkably similar to the track-bearing late Albian-Cenomanian sandstones of NE New Mexico, Oklahoma, Nebraska, and SE Colorado, which also have a tetrapod footprint ichnofacies dominated by ornithopod (Caririchnium) and theropod (Magnoavipes) tracks throughout the so-called “dinosaur freeway.”  相似文献   

9.
Four extant subspecies of Terrapene carolina in eastern North America, Terrapene carolina bauri, Terrapene carolina carolina, Terrapene carolina triunguis, and Terrapene carolina major, are recognized based on morphological studies. A fifth subspecies, Terrapene carolina putnami, has been described from Pleistocene deposits but is very similar morphologically to T. c. major. Questions concerning the relationship of the Gulf Coast box turtle (T. c. major) to other box turtles have been pervasive ever since it was described. We used a combined morphological and genetic analysis to address the status of T. c. major and other T. carolina lineages. Terrapene c. bauri, T. c. carolina, and T. c. triunguis are distinct based on a discriminate function analysis of 25 morphological characters, including characters traditionally used to assign subspecies. The results of the present study confirm that box turtles phenotypically diagnosed as T. c. bauri, T. c. carolina, and T. c. triunguis all occur within the hypothesized range of T. c. major, and that the latter does not possess a diagnosable morphology. The three morphological lineages also possess divergent mitochondrial haplotypes that are present within the hypothesized range of T. c. major. In addition, a fourth distinct mtDNA lineage co‐occurs within the putative range of T. c. major. This unique lineage may include mitochondrial DNA variation from the Pleistocene T. c. putnami. Analysis of nine nuclear DNA microsatellites revealed no population structure in box turtles currently assigned to T. c. major from the Florida Panhandle, suggesting a complete admixture of lineages in this region. The results of the present study indicate that box turtles traditionally assigned to T. c. major based on phenotype are the result of introgression between eastern extant (predominantly T. c. carolina) and an extinct subspecies, T. c. putnami. Published 2011. This article is a US Government work and is in the public domain in the USA. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 889–901.  相似文献   

10.
Many semiarid rangelands have recently experienced changes in dominant plant life form. Both woody plant expansion into grasslands and the invasion of annual grasses into shrublands have potential influence on regional carbon cycling. Soil carbon content, chemistry, and distribution may change following shifts in dominant plant life form because plant life forms differ in litter chemistry and patterns of detrital input. This study assesses the amount, quality, and distribution of soil C below woody vegetation and grasses at three rangelands in Texas, New Mexico, and Utah. At each of these sites there has been a well-documented shift in dominant plant life form. In Texas and New Mexico, woody plants have increased in grasslands, while grasses have invaded into former shrublands in Utah. We measured total soil carbon, particulate organic matter (POM) C, and the carbon isotopic composition of soil carbon beneath woody plants and grasses at each of these three sites. At the La Copita Research Area in south-central Texas there was significantly more soil C found beneath Prosopis glandulosa, the dominant woody plant, than was found beneath grasses. Mean soil C content to 1 m was 7.2 kg C m–2 beneath P. glandulosa and 6.0 kg C m–2 beneath grasses. There was also significantly more POM C beneath P. glandulosa than beneath grasses. Stable carbon isotopic composition indicated that the expansion of P. glandulosa in savannas in Texas first influences carbon cycling in surface soils, then deep soil C, and finally throughout the soil profile. At the Sevilleta National Wildlife Refuge in central New Mexico, we found that there was significantly more soil C in the upper 10 cm of the soil profile beneath Larrea tridentata than was found beneath Bouteloua spp. Stable carbon isotopic composition indicated that the expansion of L. tridentata influenced C cycling throughout the soil profile. At Curlew Valley in northern Utah, we found no significant differences in total profile soil C beneath different plant life forms. However, there was significantly more soil C found at the soil surface beneath woody plants than was observed beneath annual grasses. There was significantly less POM C beneath annual grasses than was found beneath woody plants or perennial grasses. Based on stable carbon isotopic analyses, we concluded that the invasion of grasses into shrublands influenced only the upper 30 cm of the soil profile. We determined that following changes in plant life form dominance, the most consistent change in soil C was an alteration in content and distribution of POM C, a slowly cycling pool of soil C. While we failed to find a consistent change in total profile soil C with plant life form across our sites, the change in soil C chemistry may have important implications for long-term soil C storage in semiarid systems where there have been shifts in plant life form. Received: 30 March 1999 / Accepted: 11 August 1999  相似文献   

11.
Clavicles (collar bones) are variably present in mammals. Furculae (wishbones)--which may or may not be homologous with clavicles--are variably present and/or fused in birds and present in theropod dinosaurs. In this overview the development of clavicles and furculae is discussed with special attention to modes of skeletogenesis (whether intramembranous or endochondral), numbers of centres of ossification (one in chick furculae; two in murine clavicles), presence of cartilage (primary in clavicles, secondary in furculae), evidence from experimental analysis and from mutations for dependence of both clavicular and furcular growth on mechanical stimulation, and syndromes and mutations affecting clavicular development leading to both under and over development. J. Exp. Zool. 289:153-161, 2001.  相似文献   

12.
This study examines how the latitude of cultivation ofGinkgo biloba affects the timing of all phases of its sexual reproductive cycle, from pollination through germination. Seeds produced by trees growing in warm-temperate climates germinate earlier in the year than seeds produced in cold-temperate climates, and they have a longer period of time available for seedling establishment. The embryos ofG. biloba seeds possess a temperature-dependent developmental-delay mechanism that allows seeds to survive winter by preventing premature germination in the fall. This and other cold-climate adaptations appear to have evolved within the genusGinkgo during the early Cretaceous, when the Northern Hemisphere was undergoing dramatic cooling after a long period of stable, warm conditions.Ginkgo biloba seeds possess an odoriferous sarcotesta that attracts mammalian scavengers in Asia-most notably members of the Carnivora—presumably by mimicking the smell of carrion. Seeds cleaned of their sarcotesta germinated faster and at higher percentages than those with their sarcotesta intact, suggesting that animal dispersal plays an important role in promoting seedling establishment. During the Cretaceous, potential dispersal agents included mammals, birds, and carnivorous dinosaurs.  相似文献   

13.
Close RA  Rayfield EJ 《PloS one》2012,7(5):e36664
The furcula displays enormous morphological and structural diversity. Acting as an important origin for flight muscles involved in the downstroke, the form of this element has been shown to vary with flight mode. This study seeks to clarify the strength of this form-function relationship through the use of eigenshape morphometric analysis coupled with recently developed phylogenetic comparative methods (PCMs), including phylogenetic Flexible Discriminant Analysis (pFDA). Additionally, the morphospace derived from the furculae of extant birds is used to shed light on possible flight adaptations of Mesozoic fossil taxa. While broad conclusions of earlier work are supported (U-shaped furculae are associated with soaring, strong anteroposterior curvature with wing-propelled diving), correlations between form and function do not appear to be so clear-cut, likely due to the significantly larger dataset and wider spectrum of flight modes sampled here. Interclavicular angle is an even more powerful discriminator of flight mode than curvature, and is positively correlated with body size. With the exception of the close relatives of modern birds, the ornithuromorphs, Mesozoic taxa tend to occupy unique regions of morphospace, and thus may have either evolved unfamiliar flight styles or have arrived at similar styles through divergent musculoskeletal configurations.  相似文献   

14.
Monocotyledons are distinguishable from dicotyledons by their subtype P2 sieve-element plastids containing cuneate protein crystals, a synapomorphic character uniformly present from basal groups through Lilioids to Commelinoids. The dicotyledon generaAsarum andSaruma (Aristolochiaceae-Asaroideae) are the only other taxa with cuneate crystals, but their sieveelement plastids include an additional large polygonal crystal, as is typical of many eumagnoliids. New investigations in Melanthiaceae s.l. revealed the same pattern (polygonal plus cuneate crystals) in the sieve-element plastids ofJaponolirion osense (Japonoliriaceae/Petrosaviaceae), ofHarperocallis flava, Pleea tenuifolia, andTofleldia (all: Tofieldiaceae). InNarthecium ossifragum a large crystal, present in addition to cuneate ones, usually breaks up into several small crystals, whereas inAletris glabra andLophiola americana (Nartheciaceae) and in all of the 15 species studied and belonging to Melanthiaceae s.str. only cuneate crystals are found. Highresolution TEM pictures reveal a crystal substructure that is densely packed in both cuneate and polygonal forms, but in Tofieldiaceae the polygonal crystals stain less densely, probably as a result of the slightly wider spacing of their subunits. The small crystals ofNarthecium are “loose”; that is, much more widely spaced. Such “loose” crystals are commonly found in sieve-element plastids of Velloziaceae, present there in addition to angular crystals, and together with cuneate crystals in a few Lilioids and many taxa of Poales (Commelinoids). Ontogenetic studies of the sieve elements ofSaruma, Aristolochia, and several monocotyledons have shown that in their plastids cuneate crystals develop very early and independent from a polygonal one present in some taxa. Therefore, a conceivable particulation of polygonal into cuneate crystals is excluded. Consequently, mutations of some monocotyledons that contain a lone, large, polygonal crystal in their sieve-element plastids are explained as the result of a complex genetic block. The total result of all studies in sieve-element plastids suggests thatJaponolirion and Tofieldiaceae are the most basal monocotyledons and that Aristolochiaceae are their dicotyledon sister group.  相似文献   

15.
Twenty-two endocasts of 12 specimens of Amurosaurus riabinini Bolotsky et Kurzanov (Lambeosaurinae, Hadrosauridae) have been examined. The most important neurobiological features of this species and duck-billed dinosaurs integrally are discussed. It has been established that the sense of smell played the major role in afferentation of hadrosaurids. In lambeosaurines, the vomeronasal sense of smell was probably intensified to search for sexual partners at a large distance. The hypotheses of sound and visual communications of duck-billed dinosaurs are not corroborated.  相似文献   

16.
Summary The organisation of the spermatozoa ofAnthopharynx sacculipenis is described, based on electron-microscopical observations. The male gametes are fili-form in shape. They are totally enclosed by cortical microtubules and possess two free cilia. Special features are dot-like dense granules arranged in regular rows and terraced elaborations of the nuclear membrane. Such terraced elaborations are not known in any other species of flatworms whereas dot-like dense granules are described for some other taxa of the Rhabdocoela. Male gametes do not show synapomorphic correspondences between the Solenopharyngidae and the Prolecithiphora.Abbreviations ci cilia - ct cortical microtubules - db dense bodies - gl glycogen - mi mitochondrion - n nucleus - nt nuclear terraces  相似文献   

17.
Studying the evolution and biogeographic distribution of dinosaurs during the latest Cretaceous is critical for better understanding the end-Cretaceous extinction event that killed off all non-avian dinosaurs. Western North America contains among the best records of Late Cretaceous terrestrial vertebrates in the world, but is biased against small-bodied dinosaurs. Isolated teeth are the primary evidence for understanding the diversity and evolution of small-bodied theropod dinosaurs during the Late Cretaceous, but few such specimens have been well documented from outside of the northern Rockies, making it difficult to assess Late Cretaceous dinosaur diversity and biogeographic patterns. We describe small theropod teeth from the San Juan Basin of northwestern New Mexico. These specimens were collected from strata spanning Santonian – Maastrichtian. We grouped isolated theropod teeth into several morphotypes, which we assigned to higher-level theropod clades based on possession of phylogenetic synapomorphies. We then used principal components analysis and discriminant function analyses to gauge whether the San Juan Basin teeth overlap with, or are quantitatively distinct from, similar tooth morphotypes from other geographic areas. The San Juan Basin contains a diverse record of small theropods. Late Campanian assemblages differ from approximately co-eval assemblages of the northern Rockies in being less diverse with only rare representatives of troodontids and a Dromaeosaurus-like taxon. We also provide evidence that erect and recurved morphs of a Richardoestesia-like taxon represent a single heterodont species. A late Maastrichtian assemblage is dominated by a distinct troodontid. The differences between northern and southern faunas based on isolated theropod teeth provide evidence for provinciality in the late Campanian and the late Maastrichtian of North America. However, there is no indication that major components of small-bodied theropod diversity were lost during the Maastrichtian in New Mexico. The same pattern seen in northern faunas, which may provide evidence for an abrupt dinosaur extinction.  相似文献   

18.
Six novel microsatellite loci are identified from genomic DNA of the threatened New Mexico Ridge‐nosed Rattlesnake (Crotalus willardi obscurus). Data from the Animas Mountains (New Mexico) population demonstrate these loci: (i) are highly variable with 5–24 alleles per locus, expected heterozygosities between 0.35 and 0.92, and observed heterozygosities between 0.32 and 0.91; (ii) are sufficiently variable for assigning parentage with total exclusionary power for the first parent of 0.96, and 0.99 for the second parent; and (iii) amplify similar size fragments in other rattlesnakes (C. atrox, C. lutosus, C. scutulatus, and C. tigris).  相似文献   

19.
Previously undescribed notharctine primate fossils are reported from the early Eocene San Jose Formation, San Juan Basin, New Mexico, and the early Eocene Wasatch Formation, southern Wyoming. These collections include the most complete specimens yet discovered of the poorly known species Copelemur tutus and Copelemur praetutus; the first upper dentitions of Cantius angulatus and Cantius frugivorus from the type area of these taxa; and fossils attributable to two new notharctine species, Copelemur australotutus and Smilodectes gingerichi. These new fossils reveal that current ideas concerning notharctine phylogeny are incorrect. Two major, monophyletic clades are apparent within the subfamily: the tribe Copelemurini, consisting of the genera Copelemur and Smilodectes, and the tribe Notharctini, comprising the genera Cantius, Pelycodus, and Notharctus. Analysis of the paleobiogeographic distribution of the Copelemurini indicates that this clade was limited to more southerly regions of western North America during early Eocene time. Northward migration of more tropical habitats during the late Wasatchian and early Bridgerian in western North America, associated with an overall climatic warming trend through the early and middle Eocene, appears to have allowed several mammalian taxa, including Smilodectes, to extend their ranges northward during this time interval. Such taxa thus possess diachronous distributions and have been partly responsible for the long-standing confusion regarding the biostratigraphic correlation of early Eocene faunas from New Mexico with those from Wyoming. Based on several taxa which are also known from the Wasatchian of Wyoming, the age of the San Jose Formation appears to be middle Wasatchian.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号