首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From an ether extract of the twigs and leaves of Sapium insigne four new diterpene esters were isolated. They were identified as 12-O-(2′E, 4′E-decadienoyl)-4-deoxy-16-hydroxyphorbol-13-acetate, 12-O-hexanoyl-4α-deoxy-phorbol-13-acetate, 12-O-hexanoyl-4α-deoxy-16-hydroxyphorbo-1-13-acetate and 12-O-dodecanoyl-4α-deoxy-16-hydroxyphorbol-13-acetate by spectroscopic and chemical methods.  相似文献   

2.
From the ether-soluble fraction of an extract of Sapium indicum two new nitrogen-containing esters of deoxyphorbol, sapintoxins B and C, were isolated. Both were characterized by the bright blue fluorescence which they exhibited in UV light. Sapintoxin B was identified as 12-(N-methylaminobenzoyl)-4-deoxy-5-hydroxyphorbol-13-acetate and sapintoxin C as 12-(N-methylaminobenzoyl)-4,20-dideoxy-5-hydroxyphorbol-13-acetate.  相似文献   

3.
Piscicidal constituents, A and B, related diterpene esters, C and D, were isolated from the leaves of Aleurites fordii (Euphorbiaceae). A was identified as 12-O-palmitoyl-16-hydroxyphorbol-13-acetate (1). B, C, and D, new diterpene esters, were shown to be 12-O-palmitoyl-4-deoxy-4β-16-hydroxyphorbol-13-acetate (2), 12-O-palmitoyl-4-deoxy-4α-16-hydroxyphorbol-13-acetate (3), and 12-O-palmitoyl-4-deoxy-16-hydroxylumiphorbol-13-acetate (4), respectively.  相似文献   

4.
A piscicidal constituent, C32H42O8, was isolated from Sapium japonicum. On the basis of the chemical and spectral studies, the structure of the piscicidal constituent was shown to be 1a, 12-O-n-deca-2,4,6-trienoyl-phorbol-(13)-acetate.  相似文献   

5.
Three 18-norspironstanol oligoglycosides partly acylated in their sugar moieties were isolated from the underground parts of Trillium tschonoskii. Their structures were characterized, as 1-O-[2″,3″,4″-tri-O-acetyl-α-l-rhamnopyranosyl-(1 → 2)-α-l-arabinopyranosyl]-epitrillenogenin-24-O-acetate, 1-O-[2″,3″,4″-tri-O-acetyl-α-l-rhamno-pyranosyl-(1 → 2)-α-l-arabinopyranosyl]-epitrillenogenin and 1-O-[2″,4″-di-O-acetyl-α-l-rhamnopyranosyl-(1 → 2)-α-l-arabinopyranosyl]-epitrillenogenin-24-O-acetate.  相似文献   

6.
Bioactivity-guided fractionation on the leaves of Aleurites fordii led to the isolation of a new tigliane diterpene ester, 12-O-hexadecanoyl-7-oxo-5-ene-16-hydroxyphorbol-13-acetate (1) along with four known compounds, 12-O-hexadecanoyl-7-oxo-5-ene-phorbol-13-acetate (2), 12-O-hexadecanoyl-phorbol-13-acetate (3), 12-O-hexadecanoyl-16-hydroxyphorbol-13-acetate (4), and 12-O-hexadecanoyl-4-deoxy-4α-16-hydroxyphorbol-13-acetate (5). The structures of these compounds were determined by interpretation of NMR (1D and 2D) spectroscopic data and MS data. All the isolates were evaluated for their effects on the induction of IFN-γ in NK92 cells. Compounds 3 and 4 exhibited the most potent responses in IFN-γ induction, comparable to the positive control, phorbol 12-myristate 13-acetate (PMA).  相似文献   

7.
3-C-(Acetamidomethyl)-1,2-O-isopropylidene-β-l-threofuranose (4) and the 3-acetate (5) have been prepared in high yields from mono-O-isopropylidene-d-apiose [3-C-(hydroxymethyl)-1,2-O-isopropylidene-β-l-threofuranose] (1). Acid-catalyzed methanolysis of 4 caused migration of the isopropylidene group and the formation of methyl 4-acetamido-4-deoxy-3-C-(hydroxymethyl)-2,3-O-isopropylidene-β-d-erythrofuranoside (8) in 25% yield. The major product (45%) from the acetolysis of 4 was also a pyrrolidine derivative, namely, 4-acetamido-3-C-(acetoxymethyl)-1-O-acetyl-4-deoxy-2,3-O-isopropylidene-β-d-erythrofuranose (10). Acetolysis of 5 removed the isopropylidene group and gave four acetylated pyrrolidines (isomeric at C-1 and C-2). Conditions which resulted in minimal epimerization at C-2 were established, and the major isomers 12 and 13 were isolated in reasonable yields. 1H- and 13C-n.m.r. data for equilibrium solutions of the pyrrolidines, and for intermediates 1-5, are given.  相似文献   

8.
A novel acylated cyanidin 3-sambubioside-5-glucoside was isolated from the purple-violet flowers of Matthiola longipetala subsp. bicornis (Sm) P. W. Ball. (family: Brassicaceae), and determined to be cyanidin 3-O-[2-O-(2-O-(trans-feruloyl)-β-xylopyranosyl)-6-O-(trans-feruloyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside] by chemical and spectroscopic methods. In addition, two known acylated cyanidin 3-sambubioside-5-glucosides, cyanidin 3-O-[2-O-(2-O-(trans-sinapoyl)-β-xylopyranosyl)-6-O-(trans-feruloyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside] and cyanidin 3-O-[2-O-(β-xylopyranosyl)-6-O-(trans-feruloyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside] were identified in the flowers.  相似文献   

9.
The mechanism of biosynthesis of 4-methyl-5-β-hydroxyethyl thiazole, the thiazole moiety of thiamine was studied in Salmonella typhimurium. Using the adenosine derepression technique the incorporation of various 14C-labeled precursors was determined. We found that [Me-14C]methionine, [2-14C]methionine, [U-14C]alanine, and [2-14C]glycine were not incorporated whereas [2-14C]-tyrosine was incorporated. Degradation of the 4-methyl-5-β-hydroxyethyl thiazole obtained after [2-14C]tyrosine incorporation revealed that all of the activity was located on carbon-2. These findings are discussed and compared with previous findings concerning 4-methyl-5-β-hydroxyethyl thiazole biosynthesis.  相似文献   

10.
Five carbohydrate analogs of N-acetylmuramoyl-l-alanyl-d-isoglutamine have been synthesized from benzyl 2-acetamido-2-deoxy-3-O-[d-1-(methoxycarbonyl)ethyl]-α-d-glucopyranoside (1) and the corresponding 6-O-benzoyl derivative (2). Chlorination of 1 and 2 with triphenylphosphine in carbon tetrachloride gave the 4,6-dichloro compound 3 and the 6-O-benzoyl-4-chloro compound (4), which were treated with tributyltin hydride, to yield benzyl 2-acetamido-2,4,6-trideoxy-3-O-[d-1-(methoxycarbonyl)ethyl]-α-d-xylo-hexopyranoside (6) and benzyl 2-acetamido-6-O-benzoyl-2,4-dideoxy-3-O-[d-1-(methoxycarbonyl)ethyl]-α-d-xylo-hexopyranoside (7), respectively. Methanesulfonylation of 8, derived from 7 by debenzoylation, gave the 6-methanesulfonate, which underwent displacement with azide ion to afford benzyl 2-acetamido-6-azido-2,4,6-trideoxy-3-O-[d-1-(methoxycarbonyl)ethyl]-α-d-xylo-hexopyranoside (10). Hydrolysis of the methyl ester group in compounds 3, 5 (debenzoylated 4), 6, 8, and 10 gave the corresponding free acids, which were coupled with l-alanyl-d-isoglutamine benzyl ester, to yield the dipeptide derivatives in excellent yields. Hydrogenation of the dipeptide derivatives thus obtained gave the five carbohydrate analogs of N-acetylmuramoyl-l-alanyl-d-isoglutamine, respectively, in good yields. The immunoadjuvant activity of the N-acetylmuramoyl-dipeptide analogs was examined.  相似文献   

11.
Three spirostanol and two furostanol glycosides were isolated from a methanol extract of the roots of Asparagus curillus and characterized as 3-O-[α-l-arabinopyranosyl (1→4)- β-d-glucopyranosyl]-(25S)-5β-spirostan-3β-ol, 3-O-[{α-l-rhamnopyranosyl (1→2)} {α-l-arabinopyranosyl (1→4)}-β-d-glucopyranosyl]-(25S)-5β-spirostan- 3β-ol, 3-O-[{β-d-glucopyranosyl (1→2)} {α-l-arabinopyranosyl (1→4)}-β- d-glucopyranosyl]-(25S)-5β-spirostan-3β-ol, 3-O-[{β-d-glucopyranosyl (1→2)} {α-l-arabinopyranosyl (1→4)}-β-d-glucopyranosyl]-26-O-[β-d-glucopyranosyl]- 22α-methoxy-(25S)-5β-furostan-3β, 26-diol and 3-O-[{β-d-glucopyranosyl (1→2)} {α-l-arabinopyranosyl (1→4)}-β-d-glucopyranosyl]-26-O-[β-d-glucopyranosyl]- (25S)-5β-furostan-3β, 22α, 26-triol respectively.  相似文献   

12.
The concentration-dependent metabolism of 1-14C-labelled precursors of 22:5n-6 and 22:6n-3 was compared in rat testis cells. The amounts of [14C]22- and 24-carbon metabolites were measured by HPLC. The conversion of [1-14C]20:5n-3 to [3-14C]22:6n-3 was more efficient than that of [1-14C]20:4n-6 to [3-14C]22:5n-6. At low substrate concentration (4 μM) it was 3.4 times more efficient, reduced to 2.3 times at high substrate concentration (40 μM). The conversion of [1-14C]22:5n-3 to [1-14C]22:6n-3 was 1.7 times more efficient than that of [1-14C]22:4n-6 to [1-14C]22:5n-6 using a low, but almost equally efficient using a high substrate concentration. When unlabelled 20:5n-3 was added to a cell suspension incubated with [1-14C]20:4n-6 or unlabelled 22:5n-3 to a cell suspension incubated with [1-14C]22:4n-6, the unlabelled n-3 fatty acids strongly inhibited the conversion of [1-14C]20:4n-6 or [1-14C]22:4n-6 to [14C]22:5n-6. In the reciprocal experiment, unlabelled 20:4n-6 and 22:4n-6 only weakly inhibited the conversion of [1-14C]20:5n-3 and [1-14C]22:5n-3 to [14C]22:6n-3. The results indicate that if both n-6 and n-3 fatty acids are present, the n-3 fatty acids are preferred over the n-6 fatty acids in the elongation from 20- to 22- and from 22- to 24-carbon atom fatty acids. In vivo the demand for 22-carbon fatty acids for spermatogenesis in the rat may exceed the supply of n-3 precursors and thus facilitate the formation of 22:5n-6 from the more abundant n-6 precursors.  相似文献   

13.
In order to conduct metabolomic studies in a model plant for genome research, such as Arabidopsis thaliana (Arabidopsis), it is a prerequisite to obtain structural information for the isolated metabolites from the plant of interest. In this study, we isolated metabolites of Arabidopsis in a relatively non-targeted way, aiming at the construction of metabolite standards and chemotaxonomic comparison. Anthocyanins (5 and 7) called A8 and A10 were isolated and their structures were elucidated as cyanidin 3-O-[2-O-(β-d-xylopyranosyl)-6-O-(4-O-(β-d-glucopyranosyl)-E-p-coumaroyl)-β-d-glucopyranoside]-5-O-[6-O-(malonyl)-β-d-glucopyranoside] and cyanidin 3-O-[2-O-(2-O-(E-sinapoyl)-β-d-xylopyranosyl)-6-O-(4-O-(β-d-glucopyranosyl)-E-p-coumaroyl)-β-d-glucopyranoside]-5-O-[β-d-glucopyranoside] from analyses of 1D NMR, 2D NMR (1H NMR, NOE, 13C NMR, HMBC and HMQC), HRFABMS, FT-ESI-MS and GC-TOF-MS data. In addition, 35 known compounds, including six anthocyanins, eight flavonols, one nucleoside, one indole glucosinolate, four phenylpropanoids and a derivative, together with three indoles, one carotenoid, one apocarotenoid, three galactolipids, two chlorophyll derivatives, one steroid, one hydrocarbon, and two dicarboxylic acids, were also isolated and identified from their spectroscopic data.  相似文献   

14.
The reaction of N-[1-13C] acetylimidazole with cytochrome c and guanidinated cytochrome c was evaluated as a means of introducing NMR-detectable groups as conformation-dependent probes. Resonances from both N-[1-13C]acetyl lysyl and O-[1-13C]acetyl tyrosyl groups were observed when ferricytochrome c was acetylated. However, only O-[1-13C]acetyl tyrosyl resonances were seen with acetylated guanidinated ferricytochrome c. Chemical shifts of the four O-[1-13C]acetyl tyrosyl groups were conformation dependent and ranged from 172 to 176 ppm. A convenient method for the preparation of N-[1-13C]acetylimidazole is described.  相似文献   

15.
Purified, bael-gum polysaccharide containsd-galactose (71%),l-arabinose (12.5%),l-rhamnose (6.5%), andd-galacturonic acid (7%). Hydrolysis of one mole of the fully methylated polysaccharide gave: (a) from the neutral part, 2,3,4-tri-O-methyl-l-rhamnose (2 moles), 2,3,5-tri-O-methyl-l-arabinose (4 moles), 2,3,4,6-tetra-O-methyl-d-galactose (8 moles), 3,4-di-O-methyl-l-rhamnose (2 moles), 2,5-di-O-methyl-l-arabinose (1 mole), 2,4,6-tri-O-methyl-d-galactose (10 moles), 2,3-di-O-methyl-l-arabinose (1 mole), 2,4-di-O-methyl-d-galactose (14 moles), and 2-O-methyl-d-galactose (2 moles); and (b) from the acidic part, 2,3,4-tri-O-methyl-d-galacturonic acid (1 mole), 2,4,6-tri-O-methyl-3-O-(2,3,4-tri-O-methyl-d-galactopyranosyluronic acid)-d-galactose (2.6 moles), and 2,4,6-tri-O-methyl-3-O-[2,4,6-tri-O-methyl-3-O-(2,3,4-tri-O-methyl-d-galactopyranosyluronic acid)-d-galactopyranosyl]-d-galactose (1 mole). Mild hydrolysis of the whole gum yielded oligosaccharides from which 3-O-β-d-galactopyranosyl-l-arabinose, 5-O-β-d-galactopyranosyl-l-arabinose, 3-O-β-d-galactopyranosyl-d-galactose, and 6-O-β-d-galactopyranosyl-d-galactose could be isolated and characterized. The results of methylation, periodate oxidation, Smith degradation, Barry degradation, and graded hydrolysis studies were employed for the elucidation of the structure of the whole gum.  相似文献   

16.
Five triterpenoid saponins isolated from the flowers, the mature fruits and the leaves of Fatsia japonica were identified as 3-O-[β-d-glucopyranosyl(1→4)-β-d-glucopyranosyl]-hederagenin (1), 3-O-[β-d-glucopyranosyl-(1→4)-α-l-arabinopyranosyl]-oleanolic acid (2), 3-O-[α-l-arabinopyranosyl]-hederagenin (3), 3-O-[β-d-glucopyranosyl]-hederagenin (4) and 3-O-[β-d-glucopyranosyl(1→4)-α-l-arabinopyranosyl]-hederagenin (5). The saponins 1 and 2 are new, naturally occurring, triterpenoid saponins. The distribution of the five saponins in three parts of the plant was investigated. Saponins 2, 3 and 5 were present in the flowers, saponins 1, 3, 4 and 5 were in the mature fruits and saponins 2, 3, 4 and 5 were in the leaves.  相似文献   

17.
Novel upper-rim modified tetraphosphinocalix[4]arenes (5a-b) adopting 1,3-alternate conformation have been synthesized. Reaction of 5,11,17,23-tetrachloromethyl-25,26,27,28-tetrahydroxycalix[4]arene (1) with Ph2POEt gave 5,11,17,23-tetrakis(diphenylphosphinoylmethyl)-25,26,27,28-tetrahydroxycalix[4]arene (2). Tetra-O-substitution of 2 with n-propyl iodide or benzyl bromide in the presence of K2CO3 carried out to afford 5,11,17,23-tetrakis(diphenylphosphinoylmethyl)-25,26,27,28-tetrapropoxy-(3a) or -benzyloxycalix[4]arene (3b), whereas di-O-substituted calix[4]arene, 5,11,17,23-tetrakis(diphenylphosphinoylmethyl)-25,27-dipropoxy-26,28-dihydroxycalix[4]arene (4), was obtained exclusively when Na2CO3 was used as base. Reduction of 3a-b with PhSiHCl2 afforded 5,11,17,23-tetrakis(diphosphinomethyl)-25,26,27,28-tetrapropoxy-(5a) and -tetrabenzyloxycalix[4]arene (5b). 1H and 13C NMR analysis reveals that the phosphines (5a-b) and the tetra-O-substituted phosphine oxides (3a-b) adopt 1,3-alternate conformation, while the parent tetrahydroxy-(2) and the di-O-propylated phosphine oxide (4) adopt cone-conformation. The X-ray structure indicates that the calix[4]arene moieties in 4 a pinched-cone conformation in solid state. Complexation of the phosphine ligand (5a) with [RuCl2(p-cymene)]2 affords the tetranuclear complexes, [{RuCl2(p-cymene)}2 · 5a] (6), as 1,3-alternate conformer.  相似文献   

18.
《Carbohydrate research》1986,148(1):71-85
Treatment of cell walls of barley straw with Oxyporus “cellulase” (a mixture of polysaccharide hydrolases) released compounds containing p-coumaroyl and feruloyl groups bound to carbohydrates, two of which were identified as O-[5-O-(trans-p-coumaroyl)-α-l-arabinofuranosyl]-(1→3)-O-β-d-xylopyranosyl-(1→4)-d-xylopyranose (PAXX) and O-[5-O-(trans-feruloyl)-α-l-arabinofuranosyl]-(1→3)-O-β-d-xylopyranosyl-(1→4)-d-xylopyranose (FAXX).  相似文献   

19.
The structures of 11 acylated cyanidin 3-sophoroside-5-glucosides (pigments 1-11), isolated from the flowers of Iberis umbellata cultivars (Cruciferae), were elucidated by chemical and spectroscopic methods. Pigments 1-11 were acylated with malonic acid, p-coumaric acid, ferulic acid, sinapic acid and/or glucosylhydroxycinnamic acids.Pigments 1-11 were classified into four groups by the substitution patterns of the linear acylated residues at the 3-position of the cyanidin. In the first group, pigments 1-3 were determined to be cyanidin 3-O-[2-O-(2-O-(acyl)-β-glucopyranosyl)-6-O-(trans-p-coumaroyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside], in which the acyl moiety varied with none for pigment 1, ferulic acid for pigment 2 and sinapic acid for pigment 3. In the second one, pigments 4-6 were cyanidin 3-O-[2-O-(2-O-(acyl)-β-glucopyranosyl)-6-O-(4-O-(β-glucopyranosyl)-trans-p-coumaroyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside], in which the acyl moiety varied with none for pigment 4, ferulic acid for pigment 5 and sinapic acid for pigment 6. In the third one, pigments 7-9 were cyanidin 3-O-[2-O-(2-O-(acyl)-β-glucopyranosyl)-6-O-(4-O-(6-O-(trans-feruloyl)-β-glucopyranosyl)-trans-p-coumaroyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside], in which the acyl moiety varied with none for pigment 7, ferulic acid for pigment 8, and sinapic acid for pigment 9. In the last one, pigments 10 and 11 were cyanidin 3-O-[2-O-(2-O-(acyl)-β-glucopyranosyl)-6-O-(4-O-(6-O-(4-O-(β-glucopyranosyl)-trans-feruloyl)-β-glucopyranosyl)-trans-p-coumaroyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside], in which acyl moieties were none for pigment 10 and ferulic acid for pigment 11.The distribution of these pigments was examined in the flowers of four cultivars of I. umbellata by HPLC analysis. Pigment 1 acylated with one molecule of p-coumaric acid was dominantly observed in purple-violet cultivars. On the other hand, pigments (9 and 11) acylated with three molecules of hydroxycinnamic acids were observed in lilac (purple-violet) cultivars as major anthocyanins. The bluing effect and stability on these anthocyanin colors were discussed in relation to the molecular number of hydroxycinnamic acids in these anthocyanin molecules.  相似文献   

20.
Two new saponins, agavasaponin E and agavasaponin H have been isolated from the methanolic extract of Agave americana leaves and their structures elucidated. Agavasaponin E is 3-O-[β-d-xylopyranosyl-(1→2glc1)-α-l-rhamnopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→3glc 1)-β-d-glucopyranosyl-(1→4)-β-d-glucopyranosyl-(1→4)-α-d-galactopyranosyl]-(25R)-5α-spirostan-12-on-3β-ol, whereas agavasaponin H is 3-O-[β-d-xylopyranosyl-(1→2 glc 1)-α-l-rhamnopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→3 glc 1)-β-d-glucopyranosyl-(1→4)-β-d-glucopyranosyl-(1→4)-β-d-galactopyranosyl]-26-O-[β-d-glucopyranosyl]-(25R)-5α-furostan-12-on-3β,22α,26-triol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号