首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aristolochic acid Ia, aristolochic acid I methyl ester and aristolochic acid II methyl ester were identified in the roots of Aristolochia argentina.  相似文献   

2.
The carbonyl compound, previously isolated from the stems of Mallotus paniculatus, has been proved to be 29-nor-21αH-hopane-3,22-dione. The light petrol extracts of both the leaves and stems of M. hookerianus have been found to contain friedelin, friedelan- 3β-ol and sitosterol, and the ethanol extract of the former two new triterpene acids, 3-oxours-12-ene-27,28-dioic and 3β,28-dihydroxyurs-12-en-27-oic acids.  相似文献   

3.
Toxic plants with sequestering specialists are presented with a problem because plant derived toxins protect herbivores against natural enemies. It has been suggested that early induction of toxins and later relaxation of these defenses may help the plant resolve this problem because neonate caterpillars incur the physiological cost of dealing with toxins in early life, but are denied toxins when they are able to sequester them efficiently. In California, the pipevine swallowtail, Battus philenor L. (Lepidoptera: Papilionidae), feed exclusively on Aristolochia californica Torrey (Aristolochiaceae), an endemic vine that contains toxic alkaloids called aristolochic acids that caterpillars sequester to provide chemical defense in immature and adult stages. In a field experiment, the concentration of aristolochic acids doubled in the plant following leaf damage and returned to constitutive levels after six days. Neonate pipevine swallowtail caterpillars showed no aversion to high levels of aristolochic acid in a preference test. Caterpillars reared on leaves with supplemented aristolochic acid showed no physiological cost or increased mortality compared to caterpillars reared on un-supplemented leaves. Searching efficiency and capture rate of lacewing larvae (Chrysoperla), a common predator of first instar caterpillars, was compromised significantly after feeding on caterpillars reared on leaves with supplemented concentrations of aristolochic acid compared to caterpillars feeding on control plants. Additionally, mortality of lacewings increased when they were provided with a diet of B. philenor caterpillars reared on supplemented leaves compared to caterpillars reared on control leaves. Thus, the induction of aristolochic acids in the plant following leaf damage does not resolve the problem confronted by the plant and may confer benefits to this sequestering specialist.  相似文献   

4.
《Phytochemistry》1987,26(2):518-529
The minor aristolochic acids isolated from Aristolochia argentina were identified as 6,7-dimethoxy, 6-hydroxy-7-methoxy, 2-hydroxy-8-methoxy and 7-hydroxy-8-methoxy disubstituted derivatives of the 3,4-methylenedioxy-10-nitro-1-phenanthroic acid, respectively. A. argentina also contains the previously reported aristoloside. The mass spectra of the aristolochic acids, their esters and decarboxylation products have been examined. A number of successive fragmentation processes leading to the formation of aromatic hydrocarbons were observed. Cleavage of the nitro group is a prominent process in the mass spectra of the aristolochic acids and their esters. Evidence is presented that the formation of the [MNO2]+ ion occurs by an intramolecular aromatic substitution reaction with participation of the CO2R group. The different behaviour of the decarboxylated aristolochic acids is also discussed. A mechanism is proposed for the favourable loss of CH2O in the 8-methoxy isomer.  相似文献   

5.
An HPLC-UV-MS method for the analysis of aristolochic acids A, B, C and D, 7-OH-aristolochic acid A, and aristolic acid in a number of plant materials and their commercial products has been developed. HPLC with photodiode array detection and electrospray ionisation-MS in the selected ion monitoring mode allowed the identification of the target compounds and increased the selectivity of complex analyses such as those associated with multi-botanical preparations. The presented method was used to analyse 10 plant samples and six commercial products that possibly contained aristolochic acids. The resulting chromatographic profiles of the samples were significantly different from each other, and the method was directly transferred to HPLC-MS, which was used to confirm the presence of the six aristolochic acids mentioned above.  相似文献   

6.
An understanding of the fate of organic compounds originating from plants in soil is crucial for determining their persistence and concentrations in the environment. Aristolochic acids are believed to be the causal agents that induce Balkan endemic nephropathy by food contamination through soil adsorption of humic acids, major components of soil. Aristolochic acids are active chemicals in Aristolochia plant species found in endemic villages. In this article, molecular structure interactions between 18 structures of aristolochic acids with an inserted humic acid structure were studied. These structures were optimized in vacuo and by periodic box simulation with water solvate using the computational molecular mechanics MM+ method with HyperChem software. The QSPR models were used for correlation of the relationship between the hydrophobicity values of 18 AA structures coupled with a HA structure by MM+ and QSAR+ properties. Computational hydrophobicity values were considered dependent variables and were related to the structural features obtained by molecular and quantum mechanics calculations by multiple linear regression approaches. The obtained model was validated, and the results indicated differing hydrophobicity between the MM+ and QSAR+ properties.  相似文献   

7.
A HPLC procedure with a silica gel RP-18 reversed-phase column for the determination of aristolochic acids I, II in medicinal plants and slimming products was developed. The mobile system 0.3% ammonium carbonate solution-acetonitrile (75:25, v/v) with pH 7.5 was the optimal buffer to clearly separate aristolochic acids I, II within 20 min. The recovery of aristolochic acids I, II in medicinal plants and slimming products was better than 90% by extracting with methanol and purifying through a PHP-LH-20 column. The major component was aristolochic acid I in Aristolochia fangchi and the level ranged from 437 to 668 ppm. Aristolochic acid II was the major component for Aristolochia contorta and its range was <1-115 ppm. Twelve out of 16 samples of slimming pills and powders contained aristolochic acids I and/or II. The major component in most slimming products was aristolochic acid II and the level ranged from <1 to 148 ppm. It may indicate that slimming products were not mainly made of A. fangchi.  相似文献   

8.
9.
Abstract. 1. The larvae of four swallowtail butterfly species, Papilio polyxenes Fabr. in the Papilionini, Parides bunichus (Hübner) and Battus polydamas (L.) in the Troidini, and Eurytides marcellus (Cramer) in the Graphiini, were grown on host leaves to which test compounds had been added.
2. The test chemicals are biosynthetically related. Berberine, a 1-benzyl-tetrahydroisoquinoline-related (1-BTIQ) alkaloid, is found in many rutaceous hosts of the Papilionini; laudanosine, a simpler 1-BTIQ alkaloid, is found in the Papaveraceae, plants on which no papilionids feed; aristolochic acids are found only in the Aristolochiaceae, hosts of the Troidini.
3. Swallowtail larvae can tolerate the compounds characteristic of their host plants, but not chemicals found in the hosts of other papilionid groups. Diets with laudanosine did not affect the test species.
4. Our results support the contention that plant secondary chemicals, such as berberine and aristolochic acids, are important feeding barriers, and are partially responsible for host specificity in swallowtails.  相似文献   

10.
Insect herbivores contend with various plant traits that are presumed to function as feeding deterrents. Paradoxically, some specialist insect herbivores might benefit from some of these plant traits, for example by sequestering plant chemical defenses that herbivores then use as their own defense against natural enemies. Larvae of the butterfly species Battus philenor (L.) (Papilionidae) sequester toxic alkaloids (aristolochic acids) from their Aristolochia host plants, rendering larvae and adults unpalatable to a broad range of predators. We studied the importance of two putative defensive traits in Aristolochia erecta: leaf toughness and aristolochic acid content, and we examined the effect of intra- and interplant chemical variation on the chemical phenotype of B. philenor larvae. It has been proposed that genetic variation for sequestration ability is ??invisible to natural selection?? because intra- and interindividual variation in host-plant chemistry will largely eliminate a role for herbivore genetic variation in determining an herbivore??s chemical phenotype. We found substantial intra- and interplant variation in leaf toughness and in the aristolochic acid chemistry in A. erecta. Based on field observations and laboratory experiments, we showed that first-instar larvae preferentially fed on less tough, younger leaves and avoided tougher, older leaves, and we found no evidence that aristolochic acid content influenced first-instar larval foraging. We found that the majority of variation in the amount of aristolochic acid sequestered by larvae was explained by larval family, not by host-plant aristolochic acid content. Heritable variation for sequestration is the predominant determinant of larval, and likely adult, chemical phenotype. This study shows that for these highly specialized herbivores that sequester chemical defenses, traits that offer mechanical resistance, such as leaf toughness, might be more important determinants of early-instar larval foraging behavior and development compared to plant chemical defenses.  相似文献   

11.
Nearly all plants possess chemicals that are inferred to play a role in anti‐herbivore defense or resistance. The effects of various chemical defenses can vary among herbivores. Often, plant defensive compounds are examined in broad, inclusive categories, with an emphasis on total quantity, which might ignore qualitative variation in activity. Aristolochic acids are alkaloids characteristic of plants of the genus Aristolochia (Aristolochiaceae). Although aristolochic acids have been documented as effective herbivore deterrents, it remains unknown whether different kinds of aristolochic acid vary in their efficacy as defense against herbivores. We manipulated the aristolochic acid content of artificial diet to examine the effects of four aristolochic acids on larval preference and performance of the generalist herbivore Spodoptera exigua Hübner (Lepidoptera: Noctuidae). Using choice tests, we observed that the four aristolochic acids tested varied in their deterrent effectiveness, with AA‐I having the strongest effect and AA‐II having the weakest effect. No‐choice tests were used to examine larval performance. The effect on performance varied among the aristolochic acids tested. Higher concentrations of aristolochic acid were generally associated with reduced larval developmental rate and larger size at pupation. These results indicate that various forms of aristolochic acid can vary in their effect on herbivores and that simple aggregate measures of total concentration might not reflect the chemical defensive phenotype of the plant.  相似文献   

12.
Fifteen compounds were obtained from the extract of the whole herbs of Aristolochia tagala, which were divided into eight aristolactam-type alkaloids (1–6, 14 and 15) and seven aristolochic acid derivatives (7–13). Their structures were identified as aristolactam BII, aristolactam II, sauristolactam, aristolactam I, 7-methoxyaristolactam IV, aristolactam AII, 3-hydroxy-4-methoxy-10-nitrophenanthrene-1-carboxylic acid methyl ester, ariskanin A, ariskanin D, ariskanin E, aristolochic acid C, ariskanin C, ariskanin B, aristolactam-N-β-D-glucoside and cepharanone A N-β-D-glucoside by comparison of their spectral data with those reported previously in the literature. The chemotaxonomic relationships between A. tagala and other species of genus Aristolochia were also discussed. As a result, the isolated compounds closely matched the ones obtained in other species of the genus.  相似文献   

13.
This study was designed to evaluate the antimycobacterial, antibacterial and antifungal activities of the methanol extract from the stem bark of Thecacoris annobonae Pax & K. Hoffm, that of aristolochic acid I (1) and other isolated compounds. The microplate alamar blue assay (MABA) and the broth microdilution method were used to determine the minimal inhibitory concentration (MIC) and minimal microbicidal concentration (MMC) of the above samples. The H+-ATPase-mediated proton pumping assay was used to evaluate a possible mechanism of action for both the methanol extract and aristolochic acid I. The results of the MIC determinations showed that the methanol extract and aristolochic acid I prevent the growth of all studied organisms. The results obtained in this study also showed that the methanol extract as well as aristolochic acid I inhibited the H+-ATPase activity. The overall results provided evidence that the methanol extract of T. annobonae might be a potential source of new antimicrobial drug against tuberculosis, and some bacterial and fungal diseases, but should be consumed with caution, bearing in mind that the main active component, aristolochic acid I is a potentially toxic compound.  相似文献   

14.
The pentacyclic triterpene acids ursolic acid, oleanolic acid, micromeric acid, maslinic acid and 3-epi-maslinic acid have been isolated from several Salvia and Teucrium species.  相似文献   

15.
The CLAVATA3 (CLV3)/endosperm surrounding region [(ESR) CLE] peptides function as intercellular signaling molecules that regulate various physiological and developmental processes in diverse plant species. We identified five CLV3-like genes from grape vine (Vitis vinifera var. Pinot Noir): VvCLE 6, VvCLE 25-1, VvCLE 25-2, VvCLE 43 and VvCLE TDIF. These CLV3-like genes encode short proteins containing 43–128 amino acids. Except VvCLE TDIF, grape vine CLV3-like proteins possess a consensus amino acid sequence known as the CLE domain. Phylogenic analysis suggests that the VvCLE 6, VvCLE25-1, VvCLE25-2 and VvCLE43 genes have evolved from a single common ancestor to the Arabidopsis CLV3 gene. Expression analyses showed that the five grape CLV3-like genes are expressed in leaves, stems, roots and axillary buds with significant differences in their levels of expression. For example, while all of them were strongly expressed in axillary buds, VvCLE6 and VvCLE43 expression prevailed in roots, and VvCLE25-1, VvCLE25-2 and VvCLE TDIF expression in stems. The differential expression of the five grape CLV3-like peptides suggests that they play different roles in different organs and developmental stages.  相似文献   

16.
Effects of perfluorocarboxylic acids (PFCAs) on proportions of oleic acid and cis-vaccenic acid through acyl-CoA chain elongation systems have been studied in the liver of rats. Administration of PFCAs caused a significant increase in palmitoyl-CoA chain elongation activity while these chemicals did not affect palmitoleoyl-CoA chain elongation activity in vivo.Condensation for both palmitoyl-CoA and palmitoleoyl-CoA were inhibited by PFCAs in vitro at the concentrations, which were physiologically found in the liver of rats treated with the PFCAs. Δ9 Desaturase, which catalyzes both stearoyl-CoA desaturation and palmitoyl-CoA desaturation, was induced by the treatments of rats with the PFCAs. The administration of the PFCAs to rats caused a marked increase in proportion of oleic acid, while that of cis-vaccenic acid was not affected at all. These results strongly suggest that the induced palmitoyl-CoA chain elongation by PFCAs, which exist in the liver, effectively produces oleic acid in concert with the induced stearoyl-CoA desaturase, but the inhibitory effects of PFCAs on either palmitoyl-CoA chain elongation or palmitoleoyl-CoA chain elongation are not crucial for the formation of the elongated fatty acids in vivo.  相似文献   

17.
The aim of the present study was to identify the enzymes in human liver catalyzing hydroxylations of bile acids. Fourteen recombinant expressed cytochrome P450 (CYP) enzymes, human liver microsomes from different donors, and selective cytochrome P450 inhibitors were used to study the hydroxylation of taurochenodeoxycholic acid and lithocholic acid. Recombinant expressed CYP3A4 was the only enzyme that was active towards these bile acids and the enzyme catalyzed an efficient 6α-hydroxylation of both taurochenodeoxycholic acid and lithocholic acid. The Vmax for 6α-hydroxylation of taurochenodeoxycholic acid by CYP3A4 was 18.2 nmol/nmol P450/min and the apparent Km was 90 μM. Cytochrome b5 was required for maximal activity. Human liver microsomes from 10 different donors, in which different P450 marker activities had been determined, were separately incubated with taurochenodeoxycholic acid and lithocholic acid. A strong correlation was found between 6α-hydroxylation of taurochenodeoxycholic acid, CYP3A levels (r2=0.97) and testosterone 6β-hydroxylation (r2=0.9). There was also a strong correlation between 6α-hydroxylation of lithocholic acid, CYP3A levels and testosterone 6β-hydroxylation (r2=0.7). Troleandomycin, a selective inhibitor of CYP3A enzymes, inhibited 6α-hydroxylation of taurochenodeoxycholic acid almost completely at a 10 μM concentration. Other inhibitors, such as α-naphthoflavone, sulfaphenazole and tranylcypromine had very little or no effect on the activity. The apparent Km for 6α-hydroxylation of taurochenodeoxycholic by human liver microsomes was high (716 μM). This might give an explanation for the limited formation of 6α-hydroxylated bile acids in healthy humans. From the present results, it can be concluded that CYP3A4 is active in the 6α-hydroxylation of both taurochenodeoxycholic acid and lithocholic acid in human liver.  相似文献   

18.
19.

Background and Aims

Casparian bands are characteristic of the endodermis and exodermis of roots, but also occur infrequently in other plant organs, for example stems and leaves. To date, these structures have not been detected in phellem cells of a periderm. The aim of this study was to determine whether Casparian bands occur in phellem cells using tests that are known to detect Casparian bands in cells that also contain suberin lamellae. Both natural periderm and wound-induced structures were examined in shoots and roots.

Methods

Using Pelargonium hortorum as a candidate species, the following tests were conducted: (1) staining with berberine and counterstaining with aniline blue, (2) mounting sections in concentrated sulphuric acid and (3) investigating the permeability of the walls with berberine as an apoplastic, fluorescent tracer.

Key Results

(1) Berberine–aniline blue staining revealed a modification in the radial and transverse walls of mature phellem cells in both stems and roots. Three days after wounding through to the cortex of stems, the boundary zone cells (pre-existing, living cells nearest the wound) had developed vividly stained primary walls. By 17 d, staining of mature phellem cells of wound-induced periderm was similar to that of natural periderm. (2) Mature native phellem cells of stems resisted acid digestion. (3) Berberine was excluded from the anticlinal (radial and transverse) walls of mature phellem cells in stems and roots, and from the wound-induced boundary zone.

Conclusions

Casparian bands are present in mature phellem cells in both stems and roots of P. hortorum. It is proposed that Casparian bands act to retard water loss and pathogen entry through the primary cell walls of the phellem cells, thus contributing to the main functions of the periderm.  相似文献   

20.
Daniel Melin 《Phytochemistry》1975,14(10):2193-2197
Phenylalanine is the precursor of the cinnamic acids and coumarins in the stems and leafs of P. graeca L. Esterification of p-coumaric acid by quinic acid is required before oxidation to chlorogenic acid. In our experiments, we did not obtain radioactive flavonols from 14C phenylalanine. PAL activity varies as a result of light and temperature in the same manner as the level of flavonoids (especially the phenolic acids). This enzyme, therefore, plays a regulatory role in the synthesis of these phenolic substances. The variation in PAL activity during illumination does not follow the same course as described for other plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号