首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nine mutant lines lacking glutelin subunits were selected from M2 seeds of about 10000 M1 plants mutagenized with gamma rays or EMS and from 1400 mutant lines selected originally for morphological characters. There were three types of mutants, one line lacking the largest subunit among four minor bands of glutelin acidic subunits (Type 1), five lines lacking the second largest subunit band (Type 2), and three lines lacking the third largest subunit band (Type 3). Mutants lacking the smallest subunit band were not found. Type 1 lacked 2 of the 10 spots of glutelin acidic subunits separated by two-dimensional electrophoresis and 1 of the 11 spots of the 57-kDa glutelin precursor. Type 2 lacked 2 spots of acidic subunits and 1 spot of the 57-kDa glutelin precursor, and had low amounts of 1 of the 8 spots of glutelin basic subunits. Type 3 mutants lacked each of 1 spot of the acidic subunits and glutelin precursor and had low amount of 1 spot of the basic subunits. Genetic analysis of the mutated genes showed that these mutant characters were controlled by single recessive genes named glu-1, glu-2, and glu-3, respectively. Mutated genes of different lines of the same type were found to be at the same locus. RFLP analysis of F2 plants between the mutant lines and cv `Kasalath' indicated that glu-1 is on chromosome 2, glu-2 on chromosome 10, and glu-3 on chromosome 1. These mutant genes were combined by crossing, and a line lacking the 3 minor bands of the glutelin acidic subunits was developed. However, the total glutelin content of this line was not remarkably reduced, showing a only 13% decrease. Received: 1 April 1996 / Accepted: 14 June 1996  相似文献   

2.
30S and 50S subunits, in the presence of either 20 mM Mg2+ or 6 mM Mg2+ and 5mM spermidine plus 25 mM putrescine, were observed to completely associate to form 70S monosomes as monitored by sucrose gradient sedimentation. Subunits maintained under the above ionic conditions were compared with 30S and 50S particles at low (6 mM) magnesium concentration with respect to the reactivity of individual ribosomal proteins to lactoperoxidase-catalyzed iodination. Altered reactivity to enzymatic iodination of ribosomal proteins S4, S9, S10, S14, S17, S19, and S20 in the small subunit of ribosomal proteins, L2, L9, L11, L27, and L30 in the large subunit following incubation with high magnesium or magnesium and polyamines suggests that a conformation change in both subunits accompanies the formation of 70S monosomes. The results further demonstrate that the effect of Mg2+ on subunit conformation is mimicked when polyamines are substituted for magnesium necessary for subunit association.  相似文献   

3.
G Freyssinet 《Biochimie》1977,59(7):597-610
Active cytoplasmic ribosone subunits 41 and 62S were prepared by treatment with 0.1 mM puromycin in the presence of 265 mM KCl. Active chloroplast subunits 32 and 49S were obtained after dialysis of chloroplast ribosomal preparations against 1 mM Mg(2+)-containing buffer. Proteins from these different ribosomal particles were mapped by two-dimensional gel electrophoresis in the presence of urea. The 41S small cytoplasmic ribosomal subunit contains 33-36 proteins, the 62S large cytoplasmic ribosomal subunit contains 37-43, the 32S small chloroplast ribosomal subunit contains 22-24, and the 49ts large chloroplast ribosomal subunit contains 30-34 proteins. Since some proteins are lost during dissociation of monosomes into subunits, the 89S cytoplasmic monosome would have 73-83 proteins and the 68S chloroplast monosome, 56-60. The amino acid composition of ribosomal proteins shows differences between chloroplast and cytoplasmic ribosomes.  相似文献   

4.
Escherichia coli can both oxidize hydrogen and reduce protons. These activities involve three distinct [NiFe]-hydrogenases, termed Hyd-1, Hyd-2, and Hyd-3, each minimally comprising heterodimers of a large subunit, containing the [NiFe] active site, and a small subunit, bearing iron-sulfur clusters. Dihydrogen-oxidizing activity can be determined using redox dyes like benzyl viologen (BV); however, it is unclear whether electron transfer to BV occurs directly at the active site, or via an iron-sulfur center in the small subunit. Plasmids encoding Strep-tagged derivatives of the large subunits of the three E. coli [NiFe]-hydrogenases restored activity of the respective hydrogenase to strain FTD147, which carries in-frame deletions in the hyaB, hybC, and hycE genes encoding the large subunits of Hyd-1, Hyd-2, and Hyd-3, respectively. Purified Strep-HyaB was associated with the Hyd-1 small subunit (HyaA), and purified Strep-HybC was associated with the Hyd-2 small subunit (HybO), and a second iron-sulfur protein, HybA. However, Strep-HybC isolated from a hybO mutant had no other associated subunits and lacked BV-dependent hydrogenase activity. Mutants deleted separately for hyaA, hybO, or hycG (Hyd-3 small subunit) lacked BV-linked hydrogenase activity, despite the Hyd-1 and Hyd-2 large subunits being processed. These findings demonstrate that hydrogenase-dependent reduction of BV requires the small subunit.  相似文献   

5.
Ribosomes from Physarum polycephalum were purified. Optimal conditions for preparation and stability of subunits were determined. KCl concentration above 200 mM induced protein dissociation from the subunits. It was observed that dissociated ribosomes were more stable in a low ionic strength buffer than in 200 mM KCl, where the 40 S was preferentially degraded by ribonucleases. Ribosomal proteins were analyzed by two-dimensional gel electrophoresis. The first dimension was carried out at pH 8.6 while the second was run at pH 4.6. The monosome contained sixty seven proteins, of which six were acidic. Two proteins were lost after subunit dissociation. Twenty six basic and two acidic proteins were observed in the 40 S subunit while the largest subunit gave thirty nine spots on the basic part of the gel and three additional spots on the acidic side. Five proteins were shared by 40 S and 60 S.  相似文献   

6.
One- and two-dimensional gel electrophoresis were employed to characterise the proteins derived from the ribosomes of the thermophilic fungusThermomyces lanuginosus. Approximately 32 (29 basic and 3 acidic) and 45 (43 basic and 2 acidic) protein spots were resolved fromTh. lanuginosus small and large ribosomal subunits, respectively. The molecular weight of the small subunit proteins ranged from 9,800–36,000 Da with a number average molecular weight of 20,300 Da. The molecular weight range for the large subunit proteins was 12,000–48,500 Da with a number average molecular weight of 25,900 Da. Most proteins appeared to be present in unimolar amounts. These data are comparable with but not identical to those from other eukaryotic ribosomes. The sensitivities of the ribosomal proteins to increasing concentrations of NH4Cl were also evaluated by two-dimensional gel electrophoresis. Most ribosomal proteins were gradually released over a wide range of salt concentrations but some were preferentially enriched in one or two salt conditions.  相似文献   

7.
8.
9.
Complexes containing rat liver 80S ribosomes treated with puromycin and high concentrations of KCl, elongation factor 2 (EF-2) from pig liver, and guanosine 5'-[beta, gamma-methylene]triphosphate were prepared. Neighboring proteins in the complexes were cross-linked with the bifunctional reagent 2-iminothiolane. Proteins were extracted and then separated into 22 fractions by chromatography on carboxymethylcellulose of which seven fractions were used for further analyses. Each protein fraction was subjected to diagonal polyacrylamide/sodium dodecyl sulfate gel electrophoresis. Nine cross-linked protein pairs between EF-2 and ribosomal proteins were shifted from the line formed with monomeric proteins. The spots of ribosomal proteins cross-linked to EF-2 were cut out from the gel plate and labelled with 125I. The labelled protein was extracted from the gel and identified by three kinds of two-dimensional gel electrophoresis, followed by autoradiography. The following proteins of both large and small subunits were identified: L9, L12, L23, LA33 (acidic protein of Mr 33000), P2, S6 and S23/S24, and L3 and L4 in lower yields. The results are discussed in relation to the topographies of ribosomal proteins in large and small subunits. Furthermore we found new neighboring protein pairs in large subunits, LA33-L11 and LA33-L12.  相似文献   

10.
We have previously characterized mutant strains of Escherichia coli that are able to take over stationary-phase cultures. Here we describe two insertion mutations that prevent such strains from expressing this phenotype. Both insertions were mapped to min 51, and sequence analysis revealed that both mutated genes encode proteins homologous to subunits of mitochondrial NADH dehydrogenase I. Crude extracts prepared from both mutant strains were able to oxidize NADH but lacked the enzymatic activity needed to oxidize deamino-NADH, a substrate specific for NADH dehydrogenase I. This is the first identification of genes encoding subunits of NADH dehydrogenase I in E. coli. The significance of the inability of these mutant strains to compete in stationary-phase cultures is discussed.  相似文献   

11.
12.
The distribution of ribosomal proteins in monosomes, polysomes, the postribosomal cytosol, and the nucleus was determined during steady-state growth in vegetative amoebae. A partitioning of previously reported cell-specific ribosomal proteins between monosomes and polysomes was observed. L18, one of the two unique proteins in amoeba ribosomes, was distributed equally among monosomes and polysomes. However S5, the other unique protein, was abundant in monosomes but barely visible in polysomes. Of the developmentally regulated proteins, D and S6 were detectable only in polysomes and S14 was more abundant in monosomes. The cytosol revealed no ribosomal proteins. On staining of the nuclear proteins with Coomassie blue, about 18, 7 from 40S subunit and 11 from 60S subunit, were identified as ribosomal proteins. By in vivo labeling of the proteins with [35S]methionine, 24 of the 34 small subunit proteins and 33 of the 42 large subunit proteins were localized in the nucleus. For the majority of the ribosomal proteins, the apparent relative stoichiometry was similar in nuclear preribosomal particles and in cytoplasmic ribosomes. However, in preribosomal particles the relative amount of four proteins (S11, S30, L7, and L10) was two- to four-fold higher and of eight proteins (S14, S15, S20, S34, L12, L27, L34, and L42) was two-to four-fold lower than that of cytoplasmic ribosomes.  相似文献   

13.
Leaf senescence represents the final stage of leaf development and is associated with fundamental changes on the level of the proteome. For the quantitative analysis of changes in protein abundance related to early leaf senescence, we designed an elaborate double and reverse labeling strategy simultaneously employing fluorescent two-dimensional DIGE as well as metabolic (15)N labeling followed by MS. Reciprocal (14)N/(15)N labeling of entire Arabidopsis thaliana plants showed that full incorporation of (15)N into the proteins of the plant did not cause any adverse effects on development and protein expression. A direct comparison of DIGE and (15)N labeling combined with MS showed that results obtained by both quantification methods correlated well for proteins showing low to moderate regulation factors. Nano HPLC/ESI-MS/MS analysis of 21 protein spots that consistently exhibited abundance differences in nine biological replicates based on both DIGE and MS resulted in the identification of 13 distinct proteins and protein subunits that showed significant regulation in Arabidopsis mutant plants displaying advanced leaf senescence. Ribulose 1,5-bisphosphate carboxylase/oxygenase large and three of its four small subunits were found to be down-regulated, which reflects the degradation of the photosynthetic machinery during leaf senescence. Among the proteins showing higher abundance in mutant plants were several members of the glutathione S-transferase family class phi and quinone reductase. Up-regulation of these proteins fits well into the context of leaf senescence since they are generally involved in the protection of plant cells against reactive oxygen species which are increasingly generated by lipid degradation during leaf senescence. With the exception of one glutathione S-transferase isoform, none of these proteins has been linked to leaf senescence before.  相似文献   

14.
Total protein was released from isolated HeLa cell nucleoli by guanidine hydrochloride, purified by cesium chloride density gradient centrifugation, and analyzed by two-dimensional polyacrylamide gel electrophoresis. Conditions of electrophoresis restricted attention to proteins that are positively charged at pH 8.6. Most of the major nucleolar protein spots co-electrophoresed with ribosomal proteins; the majority of ribosomal proteins from both the large and small ribosomal subunits were represented. Several proteins found in association with polysomes but not on ribosomal subunits and several proteins unique to the nucleolus were also identified in these nucleolar protein patterns. In order to determine whether the ribosomal proteins found in the nucleolus represented sizable pools of ribosomal proteins, or merely ribosomal proteins contained in the preribosomal particles, [35S]methionine-labeled nucleoli were mixed with [3H]methionine-labeled polysomes. From analysis of isotopic ratios in individual protein spots it was possible to determine the stoidchiometry of individual ribosomal proteins in the nucleolus relative to their complement on cytoplasmic ribosomes. All but a few proteins exhibited relative nucleolar stoichiometry values of approximately one, indicating that there are not significant pools of most ribosomal proteins in isolated nucleoli.  相似文献   

15.
We have characterized further the molecular basis of human inherited propionyl CoA carboxylase deficiency by measuring steady state levels of the mRNAs coding for the enzyme's two protein subunits (alpha and beta) and by estimating initial synthesis and steady state levels of the protein subunits in skin fibroblasts from controls and affected patients. We studied cell lines from both major complementation groups (pccA and pccBC) corresponding, respectively, to defects in the carboxylase's alpha and beta subunits. Analysis of pccA lines revealed the absence of alpha chain mRNA in three and an abnormally small alpha-mRNA in a fourth. Despite the presence of normal beta-mRNA in each of these pccA lines, there was complete absence of both alpha and beta protein subunits under steady state conditions, even though new synthesis and mitochondrial import of beta precursors was normal. Results in nine pccBC lines revealed normal alpha mRNA in each, while the amounts of beta-mRNA were distinctly reduced in every case. Correspondingly, alpha protein subunits were present in normal amounts at steady-state, but beta subunits were uniformly decreased. In addition, in six of the nine beta deficient cell lines, partially degraded beta-subunits were observed. To help interpret these results, synthesis and stability of carboxylase subunits were studied in intact HeLa cells using a pulse-chase protocol. Whereas alpha chains were stable over the four hour interval studied, beta chains--initially synthesized in large excess over alpha chains--were degraded rapidly reaching equivalence with alpha chains after two hours.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Rat liver ribosomes were dissociated into subunits using EDTA, sodium pyrophosphate, high concentrations of KC1, as well as by incubation with puromycin in presence of 0.5 M KC1. The subunits obtained were analyzed using the density gradient centrifugation technique and their ribosomal proteins were separated by means of two-dimensional polyacrylamide gel electrophoresis. The ribosomal protein patterns of the two subunits isolated using each of the dissociating method were compared to the protein patterns of monosomes prepared by puromycin treatment alone. Our results revealed that the use of chelating agents to dissociate the ribosomes resulted in the loss of some ribosomal proteins from the small subunit. On the other hand, the use of KC1 in high concentrations to dissociate the ribosomes did not appear to cause any major loss of proteins from the ribosomes except for some acidic proteins.  相似文献   

17.
Intravenous injection of (+)-lysergic acid diethylamide into young rabbits induced a transient brain-specific disaggregation of polysomes to monosomes. Investigation of the fate of mRNA revealed that brain poly(A+)mRNA was conserved. In particular, mRNA coding for brain-specific S100 protein was not degraded, nor was it released into free ribonucleoprotein particles. Following the (+)-lysergic acid diethylamide-induced disaggregation of polysomes, mRNA shifted from polysomes and accumulated on monosomes. Formation of a blocked monosome complex, which contained intact mRNA and 40-S plus 60-S ribosomal subunits but lacked nascent peptide chains, suggested that (+)-lysergic acid diethylamide inhibited brain protein synthesis at a specific stage of late initiation or early elongation.  相似文献   

18.
Separation of cytoplasmic ribosomal proteins of Microsporum canis   总被引:1,自引:0,他引:1  
The cytoplasmic ribosomal proteins of Microsporum canis were characterised in basic-acidic and basic-SDS two-dimensional polyacrylamide gel electrophoresis systems. The small subunit contained 28 proteins and the large subunit 38 proteins. The molecular weights of these proteins were in the range of 32,500 to 7600 and 48,000 to 11,000 in the small and large subunits, respectively. The 80S ribosomes showed 65 and 66 protein spots in basic-acidic and basic-SDS gel systems, respectively.  相似文献   

19.
Murine L5178Y cell ribosomes were dissociated into subunits either with potassium chloride in the presence of puromycin or with the chelating agent EDTA. The proteins of ribosomal subunits obtained by these different methods were compared by means of bidimensional polyacrylamide gel electrophoresis. KCl-derived 60S and 40S subunits were shown to contain 38 and 31 proteins respectively, 3 of them having identical electrophoretic mobilities. Preparations of EDTA-dissociated ribosomal subparticles contained different proportions of these proteins, and 11 major spots were shared between the EDTA-derived large and small ribosomal subunits. Furthermore, 10 proteins absent from subunits treated by high concentrations of KCl were reproducibly found in EDTA-treated ribosomal subparticles.  相似文献   

20.
Horiguchi R  Dohra H  Tokumoto T 《Proteomics》2006,6(14):4195-4202
Proteasomes are large, multi-subunit particles that act as the proteolytic machinery for most of the regulated intracellular protein degradation in eukaryotic cells. An alteration of proteasome function may be important for the regulation of the meiotic cell cycle. To study the change at the subunit level of the 26S proteasome during meiotic maturation, we purified 26S proteasomes from immature and mature oocytes of goldfish. Two-dimensional polyacrylamide gel electrophoresis was used to separate proteins. For differential analysis, whole spots of the 26S proteasome from goldfish oocytes were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and database analysis. Four spots that were different (only detected in mature oocyte 265 proteasomes and not in immature ones) and four protein spots that were up- or down-regulated were identified unambiguously. The mature-specific spots were not 26S proteasome components but rather their interacting proteins, and were identified as chaperonin-containing TCP-1 subunits and myosin light chain. Minor spots of three subunits of the 20S core particle and one of the 19S regulatory particle showed meiotic cell cycle-dependent changes. These results demonstrate that modifications of proteasomal subunits and cell cycle phase-dependent interactions of proteins with proteasomes occur during oocyte maturation in goldfish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号