首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Morphological changes in the ontogeny of sauropods are poorly known, making difficult to establish the systematic affinities of very young individuals. New information on an almost complete juvenile sauropod (SMA 0009) with an estimated total length of about 2 m is here presented. The specimen was described as a diplodocid owing to the presence of some putative synapomorphies of this group. However, recent further preparation revealed the absence of diplodocid characters and the presence of macronarian derived characters. To test the affinities of this specimen, a phylogenetic analysis was conducted. The strict consensus tree recovers the specimen as a basal titanosauriform, in an unresolved relation with Brachiosaurus and Giraffatitan. Nevertheless, a brachiosaurid assignment is here suggested in base of the widely accepted monophyly of this group (only recovered when SMA 0009 is placed within this group). Although the existence of a new taxon cannot be completely ruled out, the combination of derived and plesiomorphic characters in the specimen suggests its assignment to Brachiosaurus. Sixteen extra steps are needed to place this specimen within Diplodocidae. The high cost to place this specimen within this group is owing to the fact that several diplodocid characters are absent in SMA 0009, such as the absence of divided centroprezygapophyseal lamina in cervical vertebrae, procoelous anterior caudal centra, composed lateral lamina in anterior caudal vertebrae, elongated middle caudal vertebrae, short cervical ribs and caudolateral projection of distal condyle of metatarsal I. Finally, the systematic position reveals few major ontogenetic transformations. These affect the pneumatic structures (e.g. change from simple pleurocoels in the cervical vertebrae to complex pleurocoels and the development of lateral excavations in the dorsal vertebrae) but also include unrecorded transformations of the neural spine (e.g. the development of the spinodiapophyseal lamina, the widening of the neural spines in the dorsal vertebrae) and allometric growth in some limb bones.  相似文献   

2.
Titanosaurs were small- to giant-sized sauropods, highly derived and highly pneumatic. Using morphometric analyses, we studied differences in shape of the presacral vertebral centra in some of these sauropods, especially in saltasaurines, and compared asymmetry patterns in lateral pneumatic foramina (LPF) between these titanosaurs and avian and non-avian theropods. Geometric morphometric analyses showed that the cervical centra tend to be elongated and dorsoventrally short, with an elliptical LPF located in the middle of the centrum; dorsal centra tend to be short and higher than the cervical centra, with the LPF slightly displaced to the anterior region. Shape variation can be described as a result of the ordering of the vertebrae within both the cervical and dorsal sequences, and therefore these methods can be applied to predict the position of isolated vertebrae. A persistent pattern of asymmetry among LPF was observed when length–height indexes were plotted. The right LPF are usually larger than those on the left side in the cervical vertebrae (except in Saltasaurus loricatus) but variable in the dorsal vertebrae. We propose an explanation of this asymmetry based on the asymmetric arrangement of viscera and late development of the respiratory (and air sacs) system.  相似文献   

3.
One of the diagnostic characters of dicraeosaurid sauropods is a reduction of pneumatization of dorsal and caudal vertebrae relative to their Flagellicaudata sister taxon, Diplodocidae. Here, we analyse pneumatic structures in the dicraeosaurid sauropod Pilmatueia faundezi, compare them to those of diplodocoids and report the first record of camerate chambers in a dicraeosaurid. The pneumatic structures are in a posterior cervical centrum (MLL-Pv-002) and consist of lateral pneumatic fossae on the centrum that communicate internally with large camerae. By contrast, Pilmatueia's dorsal and caudal vertebrae (MLL-Pv-005-016) lack pneumatic fossae on the centra, which is consistent with the previously reported reduced pneumaticity in dicraeosaurids. Nevertheless, the base of the neural arch and possibly the base of the bifid neural spines of a posterior dorsal vertebra (MLL-Pv-005) show pneumatic internal chambers. The pneumatic features of the Pilmatueia cervical centrum and dorsal neural arch we describe indicate that the degree of pneumatization is variable within dicraeosaurids.  相似文献   

4.
A nearly complete skeleton of a juvenile sauropod from the Lower Morrison Formation (Late Jurassic, Kimmeridgian) of the Howe Ranch in Bighorn County, Wyoming is described. The specimen consists of articulated mid-cervical to mid-caudal vertebrae and most appendicular bones, but cranial and mandibular elements are missing. The shoulder height is approximately 67 cm, and the total body length is estimated to be less than 200 cm. Besides the body size, the following morphological features indicate that this specimen is an early juvenile; (1) unfused centra and neural arches in presacral, sacral and first to ninth caudal vertebrae, (2) unfused coracoid and scapula, (3) open coracoid foramen, and (4) relatively smooth articular surfaces on the limb, wrist, and ankle bones. A large scapula, short neck and tail and elongate forelimb bones relative to overall body size demonstrate relative growth. A thin-section of the mid-shaft of a femur shows a lack of annual growth lines, indicating an early juvenile individual possibly younger than a few years old. Pneumatic structures in the vertebral column of the specimen SMA 0009 show that pneumatisation of the postcranial skeleton had already started in this individual, giving new insights in the early ontogenetic development of vertebral pneumaticity in sauropods.

The specimen exhibits a number of diplodocid features (e.g., very elongate slender scapular blade with a gradually dorsoventrally expanded distal end, a total of nine dorsal vertebrae, presence of the posterior centroparapophyseal lamina in the posterior dorsal vertebrae). Although a few diplodocid taxa, Diplodocus, cf. Apatosaurus, and cf. Barosaurus, are known from several fossil sites near the Howe Ranch, identification of this specimen, even at a generic level, is difficult due to a large degree of ontogenetic variation.  相似文献   

5.
Within Diplodocoidea (Dinosauria: Sauropoda), phylogenetic position of the three subclades Rebbachisauridae, Dicraeosauridae, and Diplodocidae is strongly influenced by a relatively small number of characters. Neural spine bifurcation, especially within the cervical vertebrae, is considered to be a derived character, with taxa that lack this feature regarded as relatively basal. Our analysis of dorsal and cervical vertebrae from small‐sized diplodocoids (representing at least 18 individuals) reveals that neural spine bifurcation is less well developed or absent in smaller specimens. New preparation of the roughly 200‐cm long diplodocid juvenile Sauriermuseum Aathal 0009 reveals simple nonbifurcated cervical neural spines, strongly reminiscent of more basal sauropods such as Omeisaurus. An identical pattern of ontogenetically linked bifurcation has also been observed in several specimens of the basal macronarian Camarasaurus, suggesting that this is characteristic of several clades of Sauropoda. We suggest that neural spine bifurcation performs a biomechanical function related to horizontal positioning of the neck that may become significant only at the onset of a larger body size, hence, its apparent absence or weaker development in smaller specimens. These results have significant implications for the taxonomy and phylogenetic position of taxa described from specimens of small body size. On the basis of shallow bifurcation of its cervical and dorsal neural spines, the small diplodocid Suuwassea is more parsimoniously interpreted as an immature specimen of an already recognized diplodocid taxon. Our findings emphasize the view that nonmature dinosaurs often exhibit morphologies more similar to their ancestral state and may therefore occupy a more basal position in phylogenetic analyses than would mature specimens of the same species. In light of this, we stress the need for phylogenetic reanalysis of sauropod clades where vital characters may be ontogenetically variable, particularly when data is derived from small individuals. J. Morphol., 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
7.
The phylogenetic relationships of sauropod dinosaurs   总被引:4,自引:0,他引:4  
A data-matrix of 205 osteological characters for 26 sauropod taxa is subjected to cladistic analysis. Two most parsimonious trees are produced, differing only in the relationships between Euhelopus, Omeisaurus and Mamenchisaurus. The monophyly of the Euhelopodidae (including Shunosaurus) is supported by seven synapomorphies. The Cetiosauridae (Patagosaurus, Cetiosaurus and Haplocanthosaurus) is paraphyletic with respect to the Neosauropoda. The latter clade divides into two major radiations–the ‘Brachiosauria’ (Camarasaurus, brachiosaurids and titanosauroids), and the Diplodocoidea (nemegtosaurids, dicraeosaurids, diplodocids and Rebbachisaurus). Further evidence for the inclusion of Opisthocoelwaudia in the Titanosauroidea is presented. Phuwiangosaurus, a problematic sauropod from Thailand, may represent one of the most plesiomorphic titanosauroids. ‘Peg’-like teeth have evolved at least twice within the Sauropoda. The postspinal lamina, on the neural spines of middle and caudal dorsal vertebrae, represents a neomorph rather than a fusion of pre-existing structures. Forked chevrons may have evolved convergently in the Euhelopodidae and the diplodocid-dicraeosaurid clade, or they may have been acquired early in sauropod evolution and subsequently lost in the ‘Brachiosauria’. The strengths and weaknesses of the data-matrix and tree topologies are explored using bootstrapping, decay analysis and randomization tests. Several nodes are only poorly supported, but this seems to reflect the large proportion of missing data in the matrix (~46%), rather than an abnormally high level of homoplasy. The results of the randomization tests indicate that the ‘data-matrix’ probably contains a strong phylogenetic ‘signal’. The relationships of some forms, such as Haplocanthosaurus, are influenced by the inclusion or exclusion of certain taxa with unusual combinations of character states. Such a result suggests that there are dangers inherent in the view that ‘higher’ level sauropod phylogeny can be accurately reconstructed using only a small number of well-known taxa.  相似文献   

8.
Inter- and intra-regional variations in vertebrae morphology and growth increment counts (band counts) were analyzed for two carcharhinid shark species, Carcharhinus plumbeus (n = 10) and C. limbatus (n = 11). Five sequential vertebrae were removed from the cervical region, above the branchial chamber and posterior to the chondrocrainium, and thoracic region, below the first dorsal fin. Dorsal–ventral height, medial–lateral breadth, and caudal–cranial length were measured for each sampled vertebra. Results indicate no significant difference in vertebral morphology within a sampled region of the vertebral column. However, a significant difference in vertebral morphology was noted between regions for both shark species, with thoracic vertebrae consistently larger than cervical vertebrae. A sub-set of three vertebrae was taken from each sampled region of each shark for sectioning and counting of growth increments. Analyses of growth increment counts by two readers indicated no significant difference in band counts within and between sampled regions.  相似文献   

9.
Gronausaurus wegneri n. gen. n. sp. represents a newly discovered leptocleidid sauropterygian based on one individual from the Early Cretaceous (Berriasian) of Gronau in Westphalia, Germany. The holotype and only known specimen consists of a skeleton, which lacks most of the dermal skull bones, a large number of cervical vertebrae and distal limb elements. Gronausaurus wegneri is unique in having distinct cavities, the subdiapophyseal fossae, below the transverse processes of the pectoral and anterior dorsal vertebrae, that probably stabilised the bones against tensile forces of the rotator and levator muscles in the living animal.  相似文献   

10.
Reexamination of the holotype of Riabininohadros weberae from the Upper Cretaceous (upper Maastrichtian) of the Crimean Peninsula (Besh-Kosh) allowed determination of previously unknown elements of the femur, astragalus, and calcaneus. This taxon shows a set of primitive characters observed in iguanodontids and basal ornithischians and is referred to as Styracosterna indet. The second dinosaur specimen from Crimea (Aleshino) is a fragmentary skeleton, including cervical and dorsal vertebrae. It possibly belongs to advanced iguanodontids or primitive hadrosauroids. Thus, in the Maastrichtian of the Crimean Peninsula, at least two dinosaur species coexisted.  相似文献   

11.
12.
Theropod dinosaurs from the Late Jurassic of Gondwana are still poorly known, with Elaphrosaurus bambergi Janensch, 1920, from the late Kimmeridgian of Tendaguru, Tanzania, being the only taxon represented by more than isolated remains from Africa. Having long been considered a coelurosaurian, more specifically an ornithomimosaur, Elaphrosaurus is currently regarded as a basal ceratosaur. Here, we revise the osteology and phylogenetic position of this important taxon. Elaphrosaurus shows many unusual osteological characters, including extremely elongated and constricted cervical vertebrae, an expansive shoulder girdle with strongly modified forelimbs, a relatively small ilium, and elongate hindlimbs with a very small ascending process of the astragalus that is fused to the tibia. We found this taxon to share many derived characters with noasaurids, such as: strongly elongate cervical and dorsal vertebrae; low, rectangular neural spines in the mid‐caudal vertebrae; presence of only an anterior centrodiapophyseal lamina in anterior caudal vertebrae; presence of a wide, U–shaped notch between the glenoid and the anteroventral hook in the coracoid; a laterally flared postacetabular blade of the ilium; a flat anterior side of the distal tibia; and a reduced shaft of metatarsal II. Our analysis placed Elaphrosaurus within a dichotomous Noasauridae as part of a Jurassic subclade, here termed Elaphrosaurinae, that otherwise includes taxa from eastern Asia. These results underscore the long and complex evolutionary history of abelisauroids, which is still only beginning to be understood.  相似文献   

13.
The skeletal morphology of Paraorthacodus jurensis, a Late Jurassic neoselachian from Nusplingen, is described based on the incomplete holotype and a newly discovered almost complete specimen. For the first time, the postcranial skeleton could be investigated. Paraorthacodus is characterized by a monognath dental heterodonty and tearing‐type dentition. The number of lateral cusplets in the lateral teeth differs between the holotype and the new specimen, possibly indicating sexual dimorphism. Clasper organs are not preserved in either of the two specimens. The notochord is sheathed by about 123 well‐calcified vertebral centra. The posterior‐most caudal vertebrae are lacking. The transition from monospondylous thoracic to diplospondylous abdominal vertebrae occurs at centra 48 and 49. The origin of the caudal fin is at the 80th centrum. Most conspicuous is the presence of a single spineless dorsal fin. In this respect, Paraorthacodus differs from most palaeospinacids, but resembles Macrourogaleus. Palidiplospinax possibly is sister to a group comprising Synechodus, Paraorthacodus, and Macrourogaleus (the Palaeospinacidae). A reinterpretation of dental and skeletal characters of synechodontiform taxa indicates that Synechodontiformes and Palaeospinacidae are monophyletic groupings of basal neoselachians. Synechodontiformes is probably sister to all living elasmobranchs.  相似文献   

14.
15.
A new species of eel cods Muraenolepis trunovi sp. nova (Muraenolepididae) from the Lazarev Sea is described. The type specimen is caught at the depth 730–860 m. The new species differs from all known species in very elongated first dorsal and pectoral fins. With respect to the body proportions and the number of rays in the second dorsal fin and the anal fin, it is related to M. marmorata but clearly differs from the latter in a greater number of vertebrae (73 vs. 67–69), in the reduced upper lateral line (to one sensory tube), and in complete absence of the lower lateral line on the body. The lectotypes of Muraenolepis marmorata Günther, 1880 (British Natural History Museum, BNHM) and M. marmoratus microps (Lönnberg, 1905) (Naturhistoriska Riksmuseum, NRM) are redescribed.  相似文献   

16.
Tapejarids are edentate pterosaurs recovered mainly from Early Cretaceous deposits. They are diagnosed by five synapomorphies, among which only one is postcranial: a broad and well‐developed tubercle at the ventroposterior margin of the coracoid. Regarding the clade Thalassodrominae, most phylogenetic studies are based on cranial elements, as postcranial skeletons of these pterosaurs are rare. Here, new postcranial material from the Romualdo Formation (Aptian–Albian) from the Araripe Basin is described. The material comprises the three posteriormost cervical vertebrae, the first seven dorsal vertebrae (fused into a notarium), both scapulocoracoids, a fragment of a sternum, a partial right humerus, a small fragment of a 4th phalanx of the wing finger, a distal extremity of the right femur and the proximal portions of both tibia and fibula. Comparisons with other specimens and morphological features examined in a phylogenetic context, such as the presence of three foramina lateral and dorsal to the neural canal of the cervical vertebrae, the presence of a notarium and a pneumatic foramen on the ventral side of the proximal portion of the humerus, allow the assignment of this specimen as Thalassodrominae indet. Regarding palaeobiogeographical aspects, to date, this clade is exclusively found in the Romualdo Formation. It is the most complete postcranial material assigned to the Thalassodrominae described so far.  相似文献   

17.
Iquius nipponicus Jordan 1919 was described on the basis of a single specimen from the Miocene of Iki Island, Nagasaki, Japan, and was tentatively assigned to the family Clupeidae. The holotype consists of the anterior portion of the body (lacking the anal and caudal fins and most of the caudal vertebrae), and is re-examined. The species is re-described based on additional specimens from the type locality. This species possesses an extremely stout third dorsal spine-like fin ray with a smooth posterior edge, an expanded anterior portion of the maxilla covering approximately half of the bone, 13 branched anal fin rays, and 22 abdominal and 16 caudal vertebrae. A phylogenetic study using the character matrix from a previous study suggests that the species forms a clade with xenocyprinins, but it differs from xenocyprinins in the form of the maxilla and the dentary and the numbers of branched anal fin rays and vertebrae. The present study concludes that the genus Iquius does not belong to the family Clupeidae. Iquius is a distinct and valid genus that is closely related to cultrins and xenocyprinins of the family Cyprinidae.  相似文献   

18.
Phenotypic integration and modularity represent important factors influencing evolutionary change. The mammalian cervical vertebral column is particularly interesting in regards to integration and modularity because it is highly constrained to seven elements, despite widely variable morphology. Previous research has found a common pattern of integration among quadrupedal mammals, but integration patterns also evolve in response to locomotor selective pressures like those associated with hominin bipedalism. Here, I test patterns of covariation in the cervical vertebrae of three hominoid primates (Hylobates, Pan, Homo) who engage in upright postures and locomotion. Patterns of integration in the hominoid cervical vertebrae correspond generally to those previously found in other mammals, suggesting that integration in this region is highly conserved, even among taxa that engage in novel positional behaviors. These integration patterns reflect underlying developmental as well as functional modules. The strong integration between vertebrae suggests that the functional morphology of the cervical vertebral column should be considered as a whole, rather than in individual vertebrae. Taxa that display highly derived morphologies in the cervical vertebrae are likely exploiting these integration patterns, rather than reorganizing them. Future work on vertebrates without cervical vertebral number constraints will further clarify the evolution of integration in this region.  相似文献   

19.
A new species of the genus Cirrhimuraena (Anguilliformes: Ophichthidae), Cirrhimuraena indica sp. nov., is described based on eight specimens collected from the Paradip (Odisha) and Petuaghat harbours (West Bengal) along the Bay of Bengal. The species is distinct in having the upper jaw fringed with 16–17 cirri before posterior nostril and 4–5 in between the anterior and posterior nostrils on the side; dorsal fin originates above the level of gill opening, predorsal length is 9.3–10.9 in total length; the head is relatively large, the length is 9.3–9.8 in total length; no infraorbital pores are observed between the nostrils; teeth are numerous, small, conical and in bands on each jaw; pores are present before the gill opening 10–11 and before anus 47–48; pectoral-fin length is 2.4–2.8 in head length; predorsal vertebrae are 8–10, pre-anal vertebrae 43–47 and total vertebrae 164–169. In the maximum likelihood tree analysis for COI gene, the new species belongs to the same clade as the other congener of Cirrhimuraena chinensis and is separated from the species morphologically and genetically.  相似文献   

20.
A pterosaur vertebral column consisting of the last cervical vertebra, the first five dorsals fused to a notarium, and the following four dorsal vertebrae, is figured and described from the Aptian Santana Formation of the Chapada do Araripe in northeastern Brazil. The specimen is tentatively referred toSantanadactylus brasilensis de Buisonjé. It is the best preserved and most complete pterosaurian notarium known. Its functional significance is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号