首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phase diagram of DOPE/water dispersions was investigated by NMR and X-ray diffraction in the water concentration range from 2 to 20 water molecules per lipid and in the temperature range from -5 to +50 degrees C. At temperatures above 22 degrees C, the dispersions form an inverse (HII) phase at all water concentrations. Below 25 degrees C, an HII phase occurs at high water concentrations, an L alpha phase is formed at intermediate water concentrations, and finally the system switches back to an HII phase at low water concentrations. The enthalpy of the L alpha-HII-phase transition is +0.3 kcal/mol as measured by differential scanning calorimetry. Using 31P and 2H NMR and X-ray diffraction, we measured the trapped water volumes in HII and L alpha phases as a function of osmotic pressure. The change of the HII-phase free energy as a function of hydration was calculated by integrating the osmotic pressure vs trapped water volume curve. The phase diagram calculated on the basis of the known enthalpy of transition and the osmotic pressure vs water volume curves is in good agreement with the measured one. The HII-L alpha-HII double-phase transition at temperatures below 22 degrees C can be shown to be a consequence of (i) the greater degree of hydration of the HII phase in excess water and (ii) the relative sensitivities with which the lamellar and hexagonal phases dehydrate with increasing osmotic pressure. These results demonstrate the usefulness of osmotic stress measurements to understand lipid-phase diagrams.  相似文献   

2.
The molecular structure of the phospholipid component of intact pulmonary surfactant isolated from bovine lung lavage has been examined by Fourier transform infrared spectroscopy. Two different physical states of the surfactant were examined by means of different infrared spectroscopic sampling techniques. Transmission infrared experiments were used to study the surfactant in the bulk phase. In these experiments, the thermotropic behavior of the bulk surfactant was monitored by temperature-induced variations in the phospholipid acyl chain CH2 stretching frequencies. A broad phase transition (confirmed by differential scanning calorimetry) was noted with an onset temperature near 15 degrees C and a completion temperature near 42 degrees C. In addition to the bulk transmission experiments, external reflection infrared spectroscopy was used to examine surfactant films in situ at the air-water interface. As surface pressure was increased from 0 to 43 dyn/cm, a gradual and continuous decrease in the CH2 stretching frequency was noted for the surfactant. Thus, under surface pressures which correspond to large lung volumes in vivo, the surfactant acyl chains exist mostly in the ordered (trans) configuration. The frequency shift in the CH2 stretching mode is consistent with a continuous ordering of the acyl chains upon compression over the pressure range 0-43 dyn/cm, and implies that a weakly cooperative phase transition occurs in the hydrocarbon region of the surface film. The surface film transition is especially noted in the pressure-area curve of the surfactant and approximates in two dimensions the broad thermotropic phase transition of the bulk phase surfactant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Monomolecular films of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and 1-palmitoyl-2-[10-(pyren-1-yl)decanoyl]-sn-glycero-3-phosphatidylc holine (PPDPC) were transferred from an air/water interface onto a germanium attenuated total reflection crystal by the Langmuir-Blodgett (LB) technique. The assemblies were thereafter investigated by Fourier transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy. To determine the molecular organization in the deposited layers we monitored the CH2 and C = O stretching and the CH2 bending regions of the infrared spectra of these lipids in detail. Using Fourier self-deconvolution technique, the carbonyl stretching mode was resolved into two models corresponding to the conformational differences in the ester linkages of the phospholipid sn-1 and sn-2 acyl chains. By varying the temperature of the subphase and using different surface pressures, we were able to transfer different conformational states of DPPC onto a germanium ATR crystal. Deposition of DPPC at 40 mN m-1 and at 15 degrees C or at 20 mN m-1 and at 35 degrees C results in LB-assemblies in ordered or disordered states, respectively, as judged by the IR spectra. These structures in LB films correspond to the state of DPPC in liposomes below and above the temperature of the order-disorder phase transition. Irrespective of the surface pressure and subphase temperature used during the deposition, an ordering process was found in DPPC films when the number of the transferred layers was increased from one to five. The pyrene-labelled phosphatidylcholine analogue, PPDPC, behaved differently from DPPC. In the case where one to three layers of PPDPC transferred at 35 mN m-1 and at 20 degrees C only conformational structures resembling those in fully hydrated liposomes above the main transition temperature were observed.  相似文献   

4.
Nag K  Keough KM  Morrow MR 《Biophysical journal》2006,90(10):3632-3642
Lung surfactant (LS), a lipid-protein mixture, forms films at the lung air-water interface and prevents alveolar collapse at end expiration. In lung disease and injury, the surface activity of LS is inhibited by leakage of serum proteins such as albumin into the alveolar hypophase. Multilamellar vesicular dispersions of a clinically used replacement, bovine lipid extract surfactant (BLES), to which (2% by weight) chain-perdeuterated dipalmitoylphosphatidycholine (DPPG mixtures-d(62)) had been added, were studied using deuterium-NMR spectroscopy ((2)H-NMR) and differential scanning calorimetry (DSC). DSC scans of BLES showed a broad gel to liquid-crystalline phase transition between 10-35 degrees C, with a temperature of maximum heat flow (T(max)) around 27 degrees C. Incorporation of the DPPC-d(62) into BLES-reconstituted vesicles did not alter the T(max) or the transition range as observed by DSC or the hydrocarbon stretching modes of the lipids observed using infrared spectroscopy. Transition enthalpy change and (2)H-NMR order parameter profiles were not significantly altered by addition of calcium and cholesterol to BLES. (2)H-NMR spectra of the DPPC-d(62) probes in these samples were characteristic of a single average lipid environment at all temperatures. This suggested either continuous ordering of the bilayer through the transition during cooling or averaging of the DPPC-d(62) environment by rapid diffusion between small domains on a short timescale relative to that characteristic of the (2)H-NMR experiment. Addition of 10% by weight of soluble bovine serum albumin (1:0.1, BLES/albumin, dry wt/wt) broadened the transition slightly and resulted in the superposition of (2)H-NMR spectral features characteristic of coexisting fluid and ordered phases. This suggests the persistence of phase-separated domains throughout the transition regime (5-35 degrees C) of BLES with albumin. The study suggests albumin can cause segregation of protein bound-lipid domains in surfactant at NMR timescales (10(-5) s). Persistent phase separation at physiological temperature may provide for a basis for loss of surface activity of surfactant in dysfunction and disease.  相似文献   

5.
Polymorphic phase behavior of platelet-activating factor.   总被引:1,自引:0,他引:1       下载免费PDF全文
Vibrational Raman and 31P NMR spectroscopic experiments have been performed as a function of temperature on aqueous dispersions of 1-0-octadecyl-2-acetoyl-sn-glycero-3-phosphocholine, a chemically synthesized platelet-activating factor. In the temperature range of -7 to 30 degrees C, the C(18)/PAF-H2O system is shown, upon heating, to undergo two thermal phase transitions centered at 9.2 degrees and 18.4 degrees C. The low temperature transition, attributed to the interdigitated lamellar gel (II)----gel (I) phase transition, is characterized by the breakdown of large lamellar organizations into small, but aggregated, bilayer vesicles. The high-temperature transition corresponds to the interdigitated lamellar gel (I)----micellar transition. The molecular ordering and packing structure of C(18)/PAF in the two lamellar phases and phase transition regions are described. It appears that the interdigitated lamellar gel (I) phase is unique for C(18)/PAF dispersions when compared with the behavior of other chemically closely related phospholipids in excess water.  相似文献   

6.
Fourier transform infrared (FTIR) and time-resolved fluorescence spectroscopy have been employed to examine the structural dynamics of lipid fatty acyl chains and lipid/water interfacial region of a binary lipid mixture containing unsaturated phosphatidylethanolamine (PE) and diacylglycerol (DG). Infrared vibrational frequencies of the CH2 symmetric stretching and the C = O stretching bands of the lipids were measured at different lipid compositions and temperatures. For 0% DG, the lamellar gel to lamellar liquid crystalline (L beta-L alpha) and the L alpha to inverted hexagonal (L alpha-HII) phase transitions were observed at approximately 15 degrees and 55 degrees C, respectively. As the DG content increased gradually from 0% to 15%, the L alpha-HII phase transition temperature decreased drastically while the L beta-L alpha phase transition temperature decreased only slightly. At 10% DG, a merge of these two phase transitions was noticed at approximately 10 degrees C. For the composition study at 23 degrees C, the L alpha-HII transition occurred at approximately 6-10% DG as indicated by abrupt increases in both the CH2 and C = O stretching frequencies at those DG contents. Using time-resolved fluorescence spectroscopy, abrupt decreases in both the normalized long time residual and the initial slope of the anisotropy decay function of lipid probes, 1-palmitoyl-2-[[2-[4-(6-phenyl-trans-1,3,5- hexatrienyl)phenyl]ethyl]carbonyl]-3-sn-phosphatidylcholine, in these PE/DG mixtures were observed at the L alpha-HII phase transition. These changes in the anisotropy decay parameters suggested that the rotational dynamics and orientational packing of the lipids were altered at the composition-induced L alpha-HII transition, and agreed with a previous temperature-induced L alpha-HII transition study on pure unsaturated PE (Cheng (1989) Biophys. J. 55, 1025-1031). The fluorescence lifetime of water soluble probes, 8,1-anilinonapthalenes sulfonate acid, in PE/DG mixtures increased abruptly at the L alpha-HII phase transition, suggesting that the conformation and hydration of the lipid/water interfacial region also undergo significant changes at the L alpha-HII transition.  相似文献   

7.
J Shah  R I Duclos  Jr    G G Shipley 《Biophysical journal》1994,66(5):1469-1478
The structural and thermotropic properties of 1-stearoyl-2-acetyl-phosphatidylcholine (C(18):C(2)-PC) were studied as a function of hydration. A combination of differential scanning calorimetry and x-ray diffraction techniques have been used to investigate the phase behavior of C(18):C(2)-PC. At low hydration (e.g., 20% H2O), the differential scanning calorimetry heating curve shows a single reversible endothermic transition at 44.6 degrees C with transition enthalpy delta H = 6.4 kcal/mol. The x-ray diffraction pattern at -8 degrees C shows a lamellar structure with a small bilayer periodicity d = 46.3 A and two wide angle reflections at 4.3 and 3.95 A, characteristic of a tilted chain, L beta' bilayer gel structure. Above the main transition temperature, a liquid crystalline L alpha phase is observed with d = 53.3 A. Electron density profiles at 20% hydration suggest that C(18):C(2)-PC forms a fully interdigitated bilayer at -8 degrees C and a noninterdigitated, liquid crystalline phase above its transition temperature (T > Tm). Between 30 and 50% hydration, on heating C(18):C(2)-PC converts from a highly ordered, fully interdigitated gel phase (L beta') to a less ordered, interdigitated gel phase (L beta), which on further heating converts to a noninterdigitated liquid crystalline L alpha phase. However, the fully hydrated (> 60% H2O) C(18):C(2)-PC, after incubation at 0 degrees C, displays three endothermic transitions at 8.9 degrees C (transition I, delta H = 1.6 kcal/mol), 18.0 degrees C (transition II), and 20.1 degrees C (transition III, delta HII+III = 4.8 kcal/mol). X-ray diffraction at -8 degrees C again showed a lamellar gel phase (L beta') with a small periodicity d = 52.3 A. At 14 degrees C a less ordered, lamellar gel phase (L beta) is observed with d = 60.5 A. However, above the transition III, a broad, diffuse reflection is observed at approximately 39 A, consistent with the presence of a micellar phase. The following scheme is proposed for structural changes of fully hydrated C(18):C(2)-PC, occurring with temperature: L beta' (interdigitated)-->L beta (interdigitated)-->L alpha(noninterdigitated)-->Micelles. Thus, at low temperature C(18):C(2)-PC forms a bilayer gel phase (L beta') at all hydrations, whereas above the main transition temperature it forms a bilayer liquid crystalline phase L alpha at low hydrations and a micellar phase at high hydrations (> 60 wt% water).  相似文献   

8.
Differential scanning calorimetry and x-ray diffraction techniques have been used to investigate the structure and phase behavior of hydrated dimyristoyl lecithin (DML) in the hydration range 7.5 to 60 weight % water and the temperature range -10 to +60 degrees C. Four different calorimetric transitions have been observed: T1, a low enthalpy transition (deltaH approximately equal to 1 kcal/mol of DML) at 0 degrees C between lamellar phases (L leads to Lbeta); T2, the low enthalpy "pretransition" at water contents greater than 20 weight % corresponding to the transition Lbeta leads to Pbeta; T3, the hydrocarbon chain order-disorder transition (deltaH = 6 to 7 kcal/mol of DML) representing the transition of the more ordered low temperature phases (Lbeta, Pbeta, or crystal C, depending on the water content) to the lamellar Lalpha phase; T4, a transition occurring at 25--27 degrees C at low water contents representing the transition from the lamellar Lbeta phase to a hydrated crystalline phase C. The structures of the Lbeta, Pbeta, C, and Lalpha phases have been examined as a function of temperature and water content. The Lbeta structure has a lamellar bilayer organization with the hydrocarbon chains fully extended and tilted with respect to the normal to the bilayer plane, but packed in a distorted quasihexagonal lattice. The Pbeta structure consists of lipid bilayer lamellae distorted by a periodic "ripple" in the plane of the lamellae; the hydrocarbon chains are tilted but appear to be packed in a regular hexagonal lattice. The diffraction pattern from the crystalline phase C indexes according to an orthorhombic cell with a = 53.8 A, b = 9.33 A, c = 8.82 A. In the lamellae bilayer Lalpha strucure, the hydrocarbon chains adopt a liquid-like conformation. Analysis of the hydration characteristics and bilayer parameters (lipid thickness, surface area/molecule) of synthetic lecithins permits an evaluation of the generalized hydration and structural behavior of this class of lipids.  相似文献   

9.
The effect of sucrose on the phase behavior of 1,2-dioleoylphosphatidylethanolamine (DOPE) as a function of hydration was studied using differential scanning calorimetry and X-ray diffraction. DOPE/sucrose/water dispersions were dehydrated at osmotic pressures (Pi) ranging from 2 to 300 MPa at 30 degrees C and 0 degrees C. The hexagonal II-to-lamellar gel (H(II)-->L(beta)) thermotropic phase transition was observed during cooling in mixtures dehydrated at Pior=57 MPa, the H(II)-->L(beta) thermotropic phase transition was precluded when sucrose entered the rigid glassy state while the lipid was in the H(II) phase. Sucrose also hindered the H(II)-to-lamellar crystalline (L(c)), and H(II)-to-inverted ribbon (P(delta)) lyotropic phase transitions, which occurred in pure DOPE. Although the L(c) phase was observed in dehydrated 2:1 (mole ratio) DOPE/sucrose mixtures, it did not form in mixtures with higher sucrose contents (1:1 and 1:2 mixtures). The impact of sucrose on formation of the ordered phases (i.e., the L(c), L(beta), and P(delta) phases) of DOPE was explained as a trapping of DOPE in a metastable H(II) phase due to increased viscosity of the sucrose matrix. In addition, a glass transition of DOPE in the H(II) phase was observed, which we believe is the first report of a glass transition in phospholipids.  相似文献   

10.
1. The polymorphic phase behaviour of aqueous dispersions of phosphatidylethanolamines isolated from human erythrocytes, hen egg yolk and Escherichia coli have been investigated employing 31P NMR techniques. All species exhibit well defined, reversible bilayer to hexagonal (H11) phase transitions as the temperature is increased. The temperatures at which these transition take place (10, 25--30 and 55--60 degrees C for erythrocyte, egg yolk and E. coli phosphatidylethanolamine, respectively) are sensitive to the fatty acid composition, occurring at a temperature up to 10 degrees C above the high temperature end of the hydrocarbon phase transition as detected by differential scanning calorimetry. In some cases the bilayer to hexagonal (H11) transitions may also be detected employing calorimetric techniques. 2. The addition of equimolar concentrations of cholesterol to these naturally occurring phosphatidylethanolamines does not dramatically affect the bilayer-hexagonal (H11) transition temperature, producing changes of up to 10 degrees C. 3. 18 : 1t/18 : 1t phosphatidylethanolamine undergoes the bilayer to hexagonal (H11) phase transition as the temperature is increased through the interval 50--55 degrees C. Alternatively, hydrated 12 : 0/12 : 0 phosphatidylethanolamine remains in the bilayer phase at temperatures up to 90 degrees C (50 degrees C above the hydrocarbon phase transition temperature). 4. The presence of 100 mM NaCl or 10 mM CaCl2 in aqueous dispersions of egg yolk phosphatidylethanolamine does not alter the temperature-dependent polymorphic phase behaviour significantly. However, at 40 degrees C, increasing the p2H above 8.0 results in progressive inhibition of the hexagonal (H11) phase and the appearance of a phase possibly of cubic structure at p2H 9.0. At p2H 10.0 the bilayer phase is preferred. 5. It is suggested that in biomembranes containing phosphatidylethanolamine as a majority species (such as that of E. coli) the fatty acid composition may primarily reflect the need to maintain bilayer structure. Alternatively, it is pointed out that in mammalian membranes such as that of the erythrocyte, phosphatidylethanolamine tends to destabilize bilayer structure. The resulting possibility that transitory non-bilayer lipid configurations may occur may be directly related to many important properties of biological membranes.  相似文献   

11.
A prodrug (Fig. 1(IV)) is synthesized consisting of the beta-blocker bupranolol which is covalently linked to 1, 3-dipalmitoyl-2-succinyl-glycerol. The resulting lipid-like prodrug is amphipathic and surface active. It disperses readily in H2O above 30 degrees C forming a smectic lamellar phase. This prodrug bears one positive charge at neutral pH and hence the swelling behaviour of dispersions in H2O is similar to that of charged phospholipids: the dispersions show continuous swelling with increasing water content and consequently in the excess H2O region of the phase diagram the thermodynamically most stable structure is the unilamellar vesicle. This includes oligomeric vesicles which may be defined as unilamellar vesicles containing smaller, also unilamellar vesicles entrapped in their internal aqueous compartment. The prodrug dispersions in H2O are polydisperse with vesicle sizes ranging from 0.1 micron to several micron. Sonication of these dispersions produce small unilamellar vesicles of an average size and size distribution similar to sonicated egg phosphatidylcholine dispersions. Unsonicated dispersions of the prodrug in H2O undergo reversibly sharp order-disorder transitions at 32 degrees C with an enthalpy change of delta H = 10 kcal/mol. In sonicated aqueous dispersions this phase transition is asymmetric and significantly broadened indicating that the cooperativity is markedly reduced. The peak temperature and enthalpy change of this broad transition are reduced compared to the transition observed with unsonicated dispersions. The temperature dependence of the electron spin resonance (ESR) hyperfine splitting and order parameter also reflects the order-disorder transition. From ESR spin labeling it is concluded that in sonicated dispersions the prodrug molecule is more mobile and its anisotropy of motion is reduced compared to unsonicated dispersions. This result indicates that the molecular packing in the highly curved bilayers of small unilamellar prodrug vesicles is significantly perturbed compared to bilayers of unsonicated dispersions.  相似文献   

12.
The structural polymorphism of two selected disaccharide glycolipids with a maltose (DMMA) and a melibiose (DMME) carbohydrate headgroup linked to dimyristyl alkyl chains were investigated by FTIR-spectroscopy, differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS) and film-balance measurements. The compounds displayed thermotropic multilamellar phases. In the gel phase, DMMA formed also a crystalline phase of orthorhombic symmetry, and DMME an interdigitated phase. The gel to liquid crystalline phase transition temperature T(c) of DMMA depended on the storage and hydration conditions, a precooled sample having a T(c) around 45 degrees C, and a freshly prepared sample around 33 degrees C. In contrast, the phase transition temperature for the gel to liquid crystalline phase of DMME was always found at 24 degrees C. Surface pressure isotherms of the lipids on water and buffer showed that DMMA covers only a small surface area (approximately 35A(2)) whereas DMME requires 50 A(2) of space on the surface. Films of DMMA can be compressed up to a maximum compressibility Pi(max) of 54 mN m(-1) whereas the tilted DMME forms less stable films with Pi(max) of 34 mN m(-1). These different structural characteristics reflect the different conformations of the disaccharide head groups. The presence of the alpha1-->4 linked maltose head group in DMMA and an alpha1-->6 linked melibiose head group in DMME induces geometrical structures ranging from a slightly wedge-shaped towards a more tilted structure, and as a consequence of Israelachvilis packing model, to the formation of different phases. In addition, the structural constraints of DMME allow the formation of a phase with interdigitated hydrocarbon chains.  相似文献   

13.
Using Raman spectroscopy, we found that the sarcoplasmic reticulum lipids of combined muscles from rabbit leg undergo at least two reversible temperature phase changes, centered at about -15 and 13 degrees C. Below the first transition, the lipid Raman CH st region is characteristic of the hexagonal lamellar gel phase. Above the second transition, the Raman CH stretch region is that of a "melted" lamellar phase, somewhat more rigid than a monophasic lipid system. The composition of the lipids was determined and the possibility of a relation between the major head group types and the phase transitions is discussed. Since SR Ca2+ATPase activity is enhanced at about 14-19 degrees C, the Raman studies suggest that ATPase activity is enhanced when the 13 degrees C transition is complete.  相似文献   

14.
K S Bruzik  M D Tsai 《Biochemistry》1987,26(17):5364-5368
The phase-transition properties of sphingomyelins were investigated in detail with totally synthetic, chemically and stereochemically pure (2S,3R)-(N-stearoylsphingosyl)-1-phosphocholine (D-erythro-C18-SPM) (1) and the corresponding 2S,3S isomer (L-threo-C18-SPM) (2). Heating scans of an unsonicated dispersion of 1 right after hydration showed a main transition (I) at 44.7 degrees C (delta H = 6.8 kcal/mol). Upon incubation at 20-25 degrees C a second transition (II) appeared at 36.0 degrees C (delta H = 5.7 kcal/mol). The two gel phases were designated as G alpha and G beta phases, respectively. The G beta phase was also metastable and relaxed to a third gel phase (G gamma) upon incubation below 10 degrees C. Conversion of the G gamma phase to the liquid-crystalline phase occurred via two new endotherms at 33.4 degrees C (2.6 kcal/mol) (III) and 43.6 degrees C (8.0 kcal/mol) (IV) as well as a main transition at 44.7 degrees C (9.5 kcal/mol). Possible interpretations have been proposed to account for the observed phase transitions. The L-threo isomer 2 showed similar thermotropic behavior to dipalmitoylphosphatidylcholine (DPPC): a "main transition" at 44.2 degrees C (6.0 kcal/mol), a "pretransition" at 43.1 degrees C (1.8 kcal/mol), and upon incubation at 7 degrees C for 2 weeks, a very broad "subtransition" at ca. 35 degrees C. The results are substantially different from previous studies of sphingomyelins using mixtures of stereoisomers. Mixing of 1 with 2, 1 with DPPC, and 2 with DPPC removed the metastability of the gel phase and resulted in a single transition.  相似文献   

15.
Differential scanning calorimetry (DSC) measurements have been carried out simultaneously with small- and wide-angle X-ray scattering recordings on liposomal dispersions of stearoyl-oleoyl-phosphatidylethanolamine (PE) in a temperature range from 20 to 80 degrees C. The main transition temperature, T(m), was determined at 30.9 degrees C with an enthalpy of 28.5 kJ/mol and the lamellar-to-inverse hexagonal phase transition temperature, T(hex), at 61.6 degrees C with an enthalpy of 3.8 kJ/mol. Additionally highly resolved small angle X-ray diffraction experiments performed at equilibrium conditions allowed a reliable decomposition of the lattice spacings into hydrophobic and hydrophilic structure elements as well as the determination of the lipid interface area of the lamellar gel-phase (L(beta)), the fluid lamellar phase (L(alpha)) and of the inverse hexagonal phase (H(II)). The rearrangement of the lipid matrix and the coincident change of free water per lipid is illustrated for both transitions. Last, possible transition mechanisms are discussed on a molecular level.  相似文献   

16.
Fourier transform infrared spectroscopy was applied to study the structural and thermal properties of bovine brain galactocerebroside (GalCer) containing amide linked non-hydroxylated or alpha-hydroxy fatty acids (NFA- and HFA-GalCer, respectively). Over the temperature range 0-90 degrees C, both GalCer displayed complex thermal transitions, characteristic of polymorphic phase behavior. Upon heating, aqueous dispersions of NFA- and HFA-GalCer exhibited high order-disorder transition temperatures near 80 and 72 degrees C, respectively. En route to the chain melting transition, the patterns of the amide I band of NFA-GalCer were indicative of two different lamellar crystalline phases, whereas those of HFA-GalCer were suggestive of lamellar gel and crystalline bilayers. Cooling from the liquid-crystalline phase resulted in the formation of another crystalline phase of NFA-GalCer and a gel phase of HFA-GalCer, with a phase transition near 62 and 66 degrees C, respectively. Prolonged incubation of GalCer bilayers at 38 degrees C revealed conversions among lamellar crystalline phases (NFA-GalCer) or between lamellar gel and crystalline bilayer structures (HFA-GalCer). Spectral changes indicated that the temperature and/or time induced formation of the lamellar crystalline structures of NFA- and HFA-GalCer was accompanied by partial dehydration and by rearrangements of the hydrogen bonding network and bilayer packing mode of GalCer.  相似文献   

17.
Dilauroylphosphatidylethanolamine dispersion forms a crystalline phase at physiological pH and temperature and in the presence of excess water. This phenomenon was observed and studied by differential scanning calorimetry, scanning densitometry and X-ray diffraction. The crystalline phase is stable at pH 5.5-9.5 and below 40 degrees C. The crystalline phase formed at pH 5.5 and pH 9.5 index according to orthorhombic cells with a = 9.41, b = 8.15, c = 46.0 and a = 9.33, b = 8.05, c = 45.8 (A), respectively. Around 43 degrees C, the crystalline phase is transformed into a multilayer liquid crystal phase. Cooling from 44 degrees C results in the disappearance of the original transition at 43 degrees C and the appearance of a second transition at around 30 degrees C. Below 30 degrees C the lipid forms a gel phase. This gel phase is metastable at pH 5.5 and a crystalline phase may be recovered from it by dispersing or aging methods. Suspensions of dilauroylphosphatidylethanolamine show similar phase transition behaviour at pH 5.5 and pH 9.5, although the transitions are somewhat broader at the higher pH. The thermotropic phase behaviour of dilauroylphosphatidylethanolamine dispersions may be governed by changes in hydration.  相似文献   

18.
Ceramides provide a major component of the barrier function of skin. An understanding of barrier organization requires a detailed characterization of ceramide phase behavior and molecular interactions. Toward this end, Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC) studies of ceramide 2 analogues (non-hydroxylated fatty acid N-acyl sphingosines) of specific chain lengths (C(14), C(16), C(18), C(20)) are presented. In addition, the molecular interactions of the individual chains in each molecule are elucidated through thermotropic FTIR studies of derivatives possessing perdeuterated fatty acid chains. DSC data showed a much smaller chain length variation (for the C(16), C(18), C(20) derivatives) in the main order-disorder transition temperature (approx. 93+/-1 degrees C) than is observed in the corresponding series of phosphatidylcholines, consistent with minimal ceramide hydration. The temperature dependence of the methylene stretching and scissoring modes revealed a solid-solid phase transition at 20-25 degrees C below the main order-disorder transition accompanied by chain packing alterations from orthorhombic-->hexagonal subcells. The chain packing transition was accompanied by enhanced penetration of water into the polar region. This was deduced from the temperature dependence of the amide I and II modes, which provide direct evidence for H-->D exchange. The CD(2) scissoring mode splitting of the deuterated fatty acid constituent of the C(16), C(18), C(20) chains revealed preferential segregation of microdomains (3-5 chains) of this species within the orthorhombic phase. In contrast, the sphingosine base chains appeared to be sufficiently separated so as to inhibit interchain vibrational coupling between them. FTIR spectroscopy provides a convenient means for characterizing domain formation, chain packing, and hydration sites of these phases, which are highly ordered under physiological conditions.  相似文献   

19.
The interaction of UO2(2+) with dipalmitoylphosphatidylcholine (DPPC) has been studied as a function of temperature and composition using nuclear magnetic resonance (NMR) spectroscopy, differential scanning calorimetry (DSC), and monolayer studies. Computer simulations of the 31P-NMR powder spectra of DPPC dispersions in the presence of various concentrations of UO2(2+) are consistent with the binding stoichiometry of [UO2(2+)]/[DPPC] = 1:4 at [UO2(2+)]/[DPPC] less than 0.3. This complex undergoes a phase transition to the liquid crystalline phase at T'm = 50 +/- 3 degrees C with a breadth delta T'm = 7 +/- 3 degrees C. This broad transition gradually disappears at higher UO2(2+) concentrations, suggesting the presence of yet another UO2(2+)/DPPC complex (or complexes) whose NMR spectra are indistinguishable from those of the 1:4 UO2(2+)/DPPC species. The temperature-dependent 13C powder spectra of 2(1-13C) DPPC dispersions in the presence of 1.2 mol ratio of UO2(2+) show that this higher order complex (complexes) also undergoes a phase transition to the liquid crystalline state at T'm +/- = 58 +/- 3 degrees C with a breadth delta T"m = 15 +/- 5 degrees C. The NMR spectra indicate that exchange among these various UO2(2+)/DPPC complexes is slow. In addition, computer simulations of the 31P-, 13C-, and 2H-NMR powder spectra show that axial diffusion of the DPPC molecules about their long axes is quenched by addition of UO2(2+) and acyl chain isomerization is the dominant motional mode. The isomerization is best described as two-site hopping of the greater than C-D bond at a rate of approximately 10(6) s-1, a motional mode which is expected for a kink diffusion.  相似文献   

20.
The synthesis of two new synthetic analogues of lecithin, two of phosphatidyl ethanolamine ("cephalin"), and one new phosphatidic acid analogue is described. They comprise one of each of the following types: the "isosteric" diether lecithin and cephalin analogues ROCH(2)CH(OR)- CH(2)CH(2)P(O) (O(-))OCH(2)CH(2)N(+)R'(3) (R = C(18)H(37); R' = H or CH(3)); and the "hydrocarbon" analogues of phosphatidic acid, lecithin, and cephalin, C(17)H(35)CH(2)CH(C(18)H(37))CH(2)P(O)(R) = (R'); [R = R' = OH; R = O(-), R' = OCH(2)CH(2)N(+)(CH(3))(3); and R = O(-), R' = OCH(2)CH(2)N(+)H(3)]. Infrared spectra and other properties of these compounds are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号