首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Na(+)-dependent Mg2+ efflux from Mg2(+)-loaded rat erythrocytes was determined from the increase of extracellular Mg2+ concentration or decrease of intracellular Mg2+ content, as measured by means of atomic absorption spectrophotometry. Mg2+ efflux was specifically combined with the uptake of Na+ at a stoichiometric ratio of 2Na+:1Mg2+, indicating electroneutral Na+/Mg2+ antiport. Na+/Mg2+ antiport depended on intracellular ATP and was inhibited by amiloride and quinidine, but was insensitive to strophanthin. Net Mg2+ efflux was only occurring at increased concentration of intracellular Mg2+ ([Mg2+]i), and stopped when the physiological Mg2+ content was reached. Intracellular Mg2+ acted cooperatively with a Hill coefficient of 2.4, which may indicate gating of Na+/Mg2+ antiport at increased [Mg2+]i. At increased intracellular Na+ concentration, Na+ competed with intracellular Mg2+ for Mg2+ efflux and Na+ could leave the rat erythrocyte via this transport system. Na+/Mg2+ antiport was working asymmetrically with respect to extra- and intracellular Na+ and Mg2+, and did not perform net Mg2+ uptake.  相似文献   

2.
In rat erythrocytes, the regulation of Na+/Mg2+ antiport by protein kinases (PKs), protein phosphatases (PPs), intracellular Mg2+, ATP and Cl- was investigated. In untreated erythrocytes, Na+/Mg2+ antiport was slightly inhibited by the PK inhibitor staurosporine, slightly stimulated by the PP inhibitor calyculin A and strongly stimulated by vanadate. PMA stimulated Na+/Mg2+ antiport. This effect was completely inhibited by staurosporine and partially inhibited by the PKC inhibitors Ro-31-8425 and BIM I. Participation of other PKs such as PKA, the MAPK cascade, PTK, CK I, CK II, CAM II-K, PI 3-K, and MLCK was excluded by use of inhibitors. Na+/Mg2+ antiport in rat erythrocytes can thus be stimulated by PKCalpha. In non-Mg2+ -loaded erythrocytes, ATP depletion reduced Mg2+ efflux and PMA stimulation in NaCl medium. A drastic activation of Na+/Mg2+ antiport was induced by Mg2+ loading which was not further stimulated by PMA. Staurosporine, Ro-31-8425, BIM I and calyculin A did not inhibit Na+/Mg2+ antiport of Mg2+ -loaded cells. Obviously, at high [Mg2+]i Na+/Mg2+ antiport is maximally stimulated. PKCalpha or PPs are not involved in stimulation by intracellular Mg2+. ATP depletion of Mg2+ -loaded erythrocytes reduced Mg2+ efflux and the affinity of Mg2+ binding sites of the Na+/Mg2+ antiporter to Mg2+. In non-Mg2+ -loaded erythrocytes Na+/Mg2+ antiport essentially depends on Cl-. Mg2+ -loaded erythrocytes were less sensitive to the activation of Na+/Mg2+ antiport by [Cl-]i.  相似文献   

3.
Na+-independent Mg2+ efflux from Mg2+-loaded human erythrocytes   总被引:1,自引:0,他引:1  
T Günther  J Vormann 《FEBS letters》1989,247(2):181-184
Net Mg2+ efflux from Mg2+-loaded human erythrocytes was maximal after reincubation in sucrose. Net Mg2+ efflux was not inhibited by furosemide or bumetanide and, therefore, was not performed by the (Na,K,Cl)- or (K,Cl)-cotransport system. A component of net Mg2+ efflux was inhibited by extracellular NaC1, KCl, LiCl, choline Cl and SITS, in analogy to the inhibition of net Cl- and SITS. Therefore, it was concluded that net Mg2+ efflux is dependent on net Cl- efflux for charge compensation. Cl- -dependent net Mg2+ efflux was inhibited by amiloride. Only 10% of the maximal net Mg2+ efflux may depend on extracellular Na+.  相似文献   

4.
Ebel H  Günther T 《FEBS letters》2003,543(1-3):103-107
Mg(2+) efflux from rat erythrocytes was measured in NaCl, NaNO(3), NaSCN and Na gluconate medium. Substitution of extracellular and intracellular Cl(-) with the permeant anions NO(3)(-) and SCN(-) reduced Mg(2+) efflux via Na(+)/Mg(2+) antiport. After substitution of extracellular Cl(-) with the non-permeant anion gluconate, Mg(2+) efflux was not significantly reduced. In Na gluconate medium, an influence of the changed membrane potential and intracellular pH on Mg(2+) efflux could be excluded. The results indicate the existence of Cl(-)-independent Na(+)/Mg(2+) antiport and of Na(+)/Mg(2+) antiport stimulated by intracellular Cl(-). Intracellular Cl(-), as determined by means of (36)Cl(-), was found to stimulate Na(+)/Mg(2+) antiport through a cooperative effect according to a sigmoidal kinetics. The Hill coefficient for intracellular Cl(-) amounted to 1.4-1.8, indicating that two intracellular Cl(-) may be simultaneously active. With respect to specificity, Cl(-) was most effective, followed by Br(-), J(-), and F(-). Stimulation of Na(+)/Mg(2+) antiport by intracellular Cl(-) together with intracellular Mg(2+) may play a role during deoxygenation of erythrocytes and in essential hypertension.  相似文献   

5.
During net Mg2+ efflux from Mg2+-preloaded chicken erythrocytes, which occurs via Na+/Mg2+ antiport, 28Mg2+ is taken up intracellularly. Km of 28Mg2+ influx amounted to 1 mM. In Na+-free medium Vmax of 28Mg2+ influx was increased and Km was reduced to 0.2 mM. 28Mg2+ influx was noncompetitively inhibited by amiloride as was found for Na+/Mg2+ antiport. The results indicate that, extracellularly, Mg2+ can compete with Na+ for common binding sites of the Na+/Mg2+ antiporter, resulting in 28Mg2+-24Mg2+ exchange. The rate of Mg2+ exchange depends on extracellular Na+ and on the rate of net Mg2+ efflux.  相似文献   

6.
T Günther  J Vormann 《FEBS letters》1992,297(1-2):132-134
Mg2+ efflux from Mg(2+)-loaded rat thymocytes was stimulated by 0.1 mM dibutyryl cAMP (db cAMP). The activation of Mg2+ efflux by db cAMP was more expressed at lower Mg(2+)-loading. cAMP induced only a very small increase in the concentration of intracellular free Mg2+ which cannot explain the activation of Na+/Mg2+ antiport. From these results it was concluded that cAMP increases the affinity of the Na+/Mg2+ antiporter for intracellular Mg2+, probably by phosphorylation.  相似文献   

7.
A one-to-one Mg2+:Mn2+ exchange in rat erythrocytes   总被引:1,自引:0,他引:1  
Mg2+ efflux in rat erythrocytes was stimulated by increases in external Na+ concentration following a Michaelian-like function with an apparent dissociation constant (KNa) of 11 +/- 3 mM (mean +/- S.D. of three experiments) and a variable maximal rate ranging from 150 to 1200 mumol (liter (1) cells X h)-1. Na+-stimulated Mg2+ efflux was inhibited by quinidine and by ATP depletion. In the absence of external Na+, Mg2+ efflux was stimulated by increases in external Mn2+ concentration following a Michaelian-like function with an apparent dissociation constant (KMn) of 35 +/- 15 microM (mean +/- S.D. of four experiments) and a variable maximal rate ranging from 350 to 1400 mumol (1 cells X h)-1. Mn2+-stimulated Mg2+ efflux was inhibited by quinidine, by ATP depletion, and by increasing the external Na+ concentration. Quinidine-sensitive (or ATP-dependent) Mg2+ efflux exhibited very similar values when compared with quinidine-sensitive (or ATP-dependent) Mn2+ influx. Mn2+ efflux in rat erythrocytes (loaded with total internal Mn2+ contents of 230-450 mumol/l cells) was stimulated by increases in external Na+ concentration and inhibited by quinidine. In the absence of external Na+, Mn2+ efflux was stimulated by increases in external Mg2+ concentration following a Michaelian-like function with an apparent dissociation constant (KMg) of about 35 +/- 5 microM (mean +/- range of two experiments) and a maximal rate of about 60-100 mumol (1 cells X h)-1. In conclusion, the Na+-stimulated Mg2+ carrier of rat erythrocytes may catalyze a one-to-one and reversible Mn2+:Mg2+ exchange in the absence of external Na+.  相似文献   

8.
Simultaneous measurements of oxygen consumption and transmembrane transport of Ca2+, H+, and phosphate show that the efflux of Ca2+ from respiring tightly coupled rat liver mitochondria takes place by an electroneutral Ca2+/2H+ antiport process that is ruthenium red-insensitive and that is regulated by the oxidation-reduction state of the mitochondrial pyridine nucleotides. When mitochondrial pyridine nucleotides are kept in a reduced steady state, the efflux of Ca2+ is inhibited; when they are in an oxidized state, Ca2+ efflux is activated. These processes were demonstrated by allowing phosphate-depleted mitochondria respiring on succinate in the presence of rotenone to take up Ca2+ from the medium. Upon subsequent addition of ruthenium red to block Ca2+ transport via the electrophoretic influx pathway, and acetoacetate, to bring mitochondrial pyridine nucleotides into the oxidized state, Ca2+ efflux and H+ influx ensued. The observed H+ influx/Ca2+ efflux ratio was close to the value 2.0 predicted for the operation of an electrically neutral Ca2+/2H+ antiport process.  相似文献   

9.
Mitochondria contain a latent K+/H+ antiporter that is activated by Mg2+-depletion and shows optimal activity in alkaline, hypotonic suspending media. This K+/H+ antiport activity appears responsible for a respiration-dependent extrusion of endogenous K+, for passive swelling in K+ acetate and other media, for a passive exchange of matrix42K+ against external K+, Na+, or Li+, and for the respiration-dependent ion extrusion and osmotic contraction of mitochondria swollen passively in K+ nitrate. K+/H+ antiport is inhibited by quinine and by dicyclohexylcarbodiimide when this reagent is reacted with Mg2+-depleted mitochondria. There is good suggestive evidence that the K+/H+ antiport may serve as the endogenous K+-extruding device of the mitochondrion. There is also considerable experimental support for the concept that the K+/H+ antiport is regulated to prevent futile influx-efflux cycling of K+. However, it is not yet clear whether such regulation depends on matrix free Mg2+, on membrane conformational changes, or other as yet unknown factors.  相似文献   

10.
In rat erythrocytes, the regulation of Na+/Mg2+ antiport by protein kinases (PKs), protein phosphatases (PPs), intracellular Mg2+, ATP and Cl was investigated. In untreated erythrocytes, Na+/Mg2+ antiport was slightly inhibited by the PK inhibitor staurosporine, slightly stimulated by the PP inhibitor calyculin A and strongly stimulated by vanadate. PMA stimulated Na+/Mg2+ antiport. This effect was completely inhibited by staurosporine and partially inhibited by the PKC inhibitors Ro-31-8425 and BIM I. Participation of other PKs such as PKA, the MAPK cascade, PTK, CK I, CK II, CAM II-K, PI 3-K, and MLCK was excluded by use of inhibitors. Na+/Mg2+ antiport in rat erythrocytes can thus be stimulated by PKCα.In non-Mg2+-loaded erythrocytes, ATP depletion reduced Mg2+ efflux and PMA stimulation in NaCl medium. A drastic activation of Na+/Mg2+ antiport was induced by Mg2+ loading which was not further stimulated by PMA. Staurosporine, Ro-31-8425, BIM I and calyculin A did not inhibit Na+/Mg2+ antiport of Mg2+-loaded cells. Obviously, at high [Mg2+]i Na+/Mg2+ antiport is maximally stimulated. PKCα or PPs are not involved in stimulation by intracellular Mg2+. ATP depletion of Mg2+-loaded erythrocytes reduced Mg2+ efflux and the affinity of Mg2+ binding sites of the Na+/Mg2+ antiporter to Mg2+. In non-Mg2+-loaded erythrocytes Na+/Mg2+ antiport essentially depends on Cl. Mg2+-loaded erythrocytes were less sensitive to the activation of Na+/Mg2+ antiport by [Cl]i.  相似文献   

11.
Sporolactobacillus inulinus has attracted scientific and commercial interest due to its high efficiency in d-lactic acid production. Pyruvate kinase (PYK) is one of the key regulatory points in glycolysis, and well-activated PYK can improve d-lactic acid production. A novel Mn2+/Mg2+-dependent PYK from S. inulinus was expressed in Escherichia coli and purified to homogeneity. Kinetic characterization demonstrated that the S. inulinus PYK had drastically higher activity and affinity toward substrates in the presence of Mn2+ compared to those of the common PYK cofactor Mg2+, and the circular dichroism spectra of the S. inulinus PYK suggested a Mn2+-mediated allosteric activation. The S. inulinus PYK was also allosterically regulated by ribose-5-phosphate or AMP activation and inorganic phosphate or ATP inhibition. The inhibition could be marked reduced or fully eliminated in the presence of activators. The result of fermentations by S. inulinus Y2-8 showed that the extracellular-added MnSO4 and KH2PO4 significantly affected glycolysis flux and d-lactic acid production, which is consistent with the allosteric regulation of Mn2+ and inorganic phosphate on PYK. The sophisticated regulatory role of PYK would establish the foundation of substantial disturbance or restructuring of cellular metabolism for improving the S. inulinus d-lactic acid production.  相似文献   

12.
K+/H+ antiport in heart mitochondria   总被引:2,自引:0,他引:2  
Heart mitochondria depleted of endogenous divalent cations by treatment with A23187 and EDTA swell in (a) K+ acetate or (b) K+ nitrate when an uncoupler is present. These mitochondria also exchange matrix 42K+ with external K+, Na+, or Li+ in a reaction that does not require respiration and is insensitive to uncouplers. Untreated control mitochondria do not swell in either medium nor do they show the passive cation exchange. Both the swelling and the exchange reactions are inhibited by Mg2+ and by quinine and other lipophilic amines. Swelling and exchange are both strongly activated at alkaline pH, and the exchange reaction is also increased markedly by hypotonic conditions. All of these properties correspond to those reported for a respiration-dependent extrusion of K+ from Mg2+-depleted mitochondria, a reaction attributed to a latent Mg2+- and H+-sensitive K+/H+ antiport. The swelling reactions are strongly inhibited by dicyclohexylcarbodiimide reacted under hypotonic conditions, but the exchange reaction is not sensitive to this reagent. Heart mitochondria depleted of Mg2+ show marked increases in their permeability to H+, to anions, and possibly to cations, and the permeability to each of these components is further increased at alkaline pH. This generalized increase in membrane permeability makes it likely that K+/H+ antiport is not the only pathway available for K+ movement in these mitochondria. It is concluded that the swelling, 42K+ exchange, and K+ extrusion data are all consistent with the presence of the putative K+/H+ antiport but that definitive evidence for the participation of such a component in these reactions is still lacking.  相似文献   

13.
Cell membrane Ca2+/Mg2+ ATPase   总被引:1,自引:0,他引:1  
  相似文献   

14.
The growth and methane formation ofMethanospirillum hungatei were inhibited by an inhibitor of Na+/H+ antiport amiloride. After addition of NaCl or LiCl, when the cells had a lower intracellular pH and were deenergized, they extruded protons into the external medium. The acidification of the external medium was stimulated by protonophores and inhibited by amiloride. These findings suggest the existence of an Na+/H+ antiport in the cytoplasmic membrane ofM. hungatei and its role in the energetics of methanogenic bacteria.  相似文献   

15.
The effect of matrix pH (pHi) on the activity of the mitochondrial Na+/Ca2+ antiport has been studied using the fluorescence of SNARF-1 to monitor pHi and Na(+)-dependent efflux of accumulated Ca2+ to follow antiport activity. Heart mitochondria respiring in a KCl medium maintain a large delta pH (interior alkaline) and show optimal Na+/Ca2+ antiport only when the pH of the medium (pH0) is acid. Addition of nigericin to these mitochondria decreases delta pH and increases the membrane potential (delta psi). Nigericin strongly activates Na+/Ca2+ antiport at values of pH0 near 7.4 but inhibits antiport activity at acid pH0. When pHi is evaluated in these protocols, a sharp optimum in Na+/Ca2+ antiport activity is seen near pHi 7.6 in the presence or absence of nigericin. Activity falls off rapidly at more alkaline values of pHi. The effects of nigericin on Na+/Ca2+ antiport are duplicated by 20 mM acetate and by 3 mM phosphate. In each case the optimum rate of Na+/Ca2+ antiport is obtained at pHi 7.5 to 7.6 and changes in antiport activity do not correlate with changes in components of the driving force of the reaction (i.e., delta psi, delta pH, or the steady-state Na+ gradient). It is concluded that the Na+/Ca2+ antiport of heart mitochondria is very sensitive to matrix [H+] and that changes in pHi may contribute to the regulation of matrix Ca2+ levels.  相似文献   

16.
Mg(2+) buffering mechanisms in PC12 cells were demonstrated with particular focus on the role of the Na(+)/Mg(2+) transporter by using a newly developed Mg(2+) indicator, KMG-20, and also a Na(+) indicator, Sodium Green. Carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP), a protonophore, induced a transient increase in the intracellular Mg(2+) concentration ([Mg(2+)](i)). The rate of decrease of [Mg(2+)](i) was slower in a Na(+)-free extracellular medium, suggesting the coupling of Na(+) influx and Mg(2+) efflux. Na(+) influxes were different for normal and imipramine- (a putative inhibitor of the Na(+)/Mg(2+) transporter) containing solutions. FCCP induced a rapid increase in [Na(+)](i) in the normal solution, while the increase was gradual in the imipramine-containing solution. The rate of decrease of [Mg(2+)](i) in the imipramine-containing solution was also slower than that in the normal solution. From these results, we show that the main buffering mechanism for excess Mg(2+) depends on the Na(+)/Mg(2+) transporter in PC12 cells.  相似文献   

17.
Lactoferrin is a growth stimulant. The basis for this effect is not clear since it is not thought to be involved in iron uptake through endocytosis. Ferric lactoferrin supports external ferrous chelate formation by K562 and HeLa cells, and ferric lactoferrin stimulates the reduction of external ferric iron by cells. Ferric lactoferrin also stimulates NADH oxidase activity in isolated rat liver plasma membranes and stimulates amiloride sensitive proton release from K562 cells. The evidence that ferric lactoferrin can participate in oxidoreduction reactions at the plasma membrane leading to activation of Na+/H+ exchange provides an alternative explanation for the proliferative effect.  相似文献   

18.
The fluorescent Mg2+/Ca2+ indicator, furaptra, was injected into single frog skeletal muscle fibers, and the indicator's fluorescence signals were measured and analyzed with particular interest in the free Mg2+ concentration ([Mg2+]) in resting muscle. Based on the fluorescence excitation spectrum of furaptra, the calibrated myoplasmic [Mg2+] level averaged 0.54 mM, if the value of dissociation constant (KD) for Mg2+ obtained in vitro (5.5 mM) was used. However, if the indicator reacts with Mg2+ with a two-fold larger KD in myoplasm, as previously suggested for the furaptra-Ca2+ reaction (M. Konishi, S. Hollingworth, A.B. Harkins, S.M. Baylor. 1991. J. Gen. Physiol. 97:271-301), the calculated [Mg2+] would average 1.1 mM. Thus, the value 1.1 mM probably represents the best estimate from furaptra of [Mg2+] in resting muscle fibers. Extracellular perfusion of muscle fibers with high Mg2+ concentration solution or low Na+ concentration solution did not cause any detectable changes in the [Mg2+]-related furaptra fluorescence within 4 min. The results suggest that the myoplasmic [Mg2+] is highly regulated near the resting level of 1 mM, and that changes only occur with a very slow time course.  相似文献   

19.
Diethylpyrocarbonate inhibits Na+/Ca2+ antiport activity in isolated heart mitochondria. The inhibition is time-dependent with maximum activity developed after 5 min at 25°C. The reaction of diethylpyrocarbonate with the mitochondrial membrane is biphasic with 25–30 nmol mg–1 reacting rapidly and an additional 30 nmol mg–1 taken up slowly over a 30-min incubation. Inhibition of mitochondrial Na+/Ca2+ antiport by diethylpyrocarbonate decreases theV max of the reaction, and the inhibition cannot be reversed by washing the mitochondria or addition of excess histidine. The inhibition occurs at levels of inhibitor that have little or no effect on Ca2+ uptake, Na+/H+ antiport, or succinate respiration. A portion of the Na+-dependent efflux of Ca2+ is insensitive to diethylpyrocarbonate and this component is abolished by diltiazem. The mechanism by which diethylpyrocarbonate inactivates Na+/Ca2+ antiport is still uncertain, but may involve the modification of an unprotonated histidine residue in the transporter.  相似文献   

20.
Thapsigargin stimulates an increase of cytosolic free Ca2+ concentration [( Ca2+]c) in, and 45Ca2+ efflux from, a clone of GH4C1 pituitary cells. This increase in [Ca2+]c was followed by a lower sustained elevation of [Ca2+]c, which required the presence of extracellular Ca2+, and was not inhibited by a Ca2(+)-channel blocker, nimodipine. Thapsigargin had no effect on inositol phosphate generation. We used thyrotropin-releasing hormone (TRH) to mobilize Ca2+ from an InsP3-sensitive store. Pretreatment with thapsigargin blocked the ability of TRH to cause a transient increase in both [Ca2+]c and 45Ca2+ efflux. The block of TRH-induced Ca2+ mobilization was not caused by a block at the receptor level, because TRH stimulation of InsP3 was not affected by thapsigargin. Rundown of the TRH-releasable store by Ca2(+)-induced Ca2+ release does not appear to account for the action of thapsigargin on the TRH-induced spike in [Ca2+]c, because BAY K 8644, which causes a sustained rise in [Ca2+]c, did not block Ca2+ release caused by TRH. In addition, caffeine, which releases Ca2+ from intracellular stores in other cell types, caused an increase in [Ca2+]c in GH4C1 cells, but had no effect on a subsequent spike in [Ca2+]c induced by TRH or thapsigargin. TRH caused a substantial decrease in the amount of intracellular Ca2+ released by thapsigargin. We conclude that in GH4C1 cells thapsigargin actively discharges an InsP3-releasable pool of Ca2+ and that this mechanism alone causes the block of the TRH-induced increase in [Ca2+]c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号