首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Bicarbonate in the culture medium is essential for DNA synthesis of primary cultured rat hepatocytes stimulated by epidermal growth factor (EGF). When primary cultured hepatocytes in supplemented Leibovitz L15 medium were placed in a 100% air incubator, no increase in DNA synthesis was observed even after stimulation by EGF. However, when these cells were cultured with NaHCO3 and EGF and placed in a 5% CO2:95% air incubator, a stimulus of DNA synthesis more than 10-fold greater than in cultures in air only was seen, and many mitotic figures could be identified. Furthermore, NaHCO3 added to supplemented DMEM/F12 medium enhanced the DNA synthesis of primary cultured rat hepatocytes in this medium. The ideal pH of the medium for DNA synthesis of cultured hepatocytes was in the range of 7.6 to 8.0. A dose response of NaHCO3 in several media showed that DNA synthesis of the cells increased as the concentration of NaHCO3 increased and that 25 to 30 mM NaHCO3 in the medium was optimal for the replication of DNA by primary cultured rat hepatocytes. The investigations described in this study were supported in part by grants CA-07175, CA-22484, and CA-45700 from the National Cancer Institute, Bethesda, MD.  相似文献   

2.
Fetal rat hepatocytes (day 19 of gestation) multiply in primary culture in arginine-free, hydrocortisone-containing chemically defined medium MX-82 supplemented either with epidermal growth factor (EGF) or insulin or both. In contrast, hepatocytes did not multiply under similar culture conditions using Dulbecco's minimum essential medium (DMEM). Cells underwent two divisions within 10 days in cultures maintained in MX-82 medium without a medium change, and cells grew to increased final cell densities when the medium was renewed every third day. When the medium MX-82 was enriched by the addition of lipids, intermediary metabolites, and trace metals (medium MX-83), cells grew to higher densities. In the absence of the growth factors, cells became quiescent and subsequently could be induced to synthesize DNA in response to EGF. With the increasing numbers of cells per dish, the growth response of the hepatocytes diminished. Levels of hepatocyte-specific albumin and alpha-fetoprotein mRNAs at day 0 were similar to those observed at day 10 in primary fetal rat hepatocyte cultures and were maintained at higher levels in medium MX-83 than in medium MX-82.  相似文献   

3.
The immunohistochemical localization of EGF and NGF receptors has been studied in the olfactory epithelium of human foetuses from 8 to 12 weeks of age. A positivity for EGF receptor, increasing with the age, was detected in the apical portion of the sensory epithelium. The NGF receptor was well detectable also at 8 weeks and localized both in differentiated olfactory cells and in some basal cells. From primary cultures of olfactory epithelium, a cell clone positive for Enolase, Neurofilaments and S-100 Protein was identified. These cells were shown to be reactive for EGF and NGF receptors. The addition of Retinoic acid to the culture medium induces a morphological differentiation of these cells that become positive for the Olfactory Marker Protein.  相似文献   

4.
Epidermal growth factor (EGF) isolated from mouse salivary glands, enhanced the multiplication and [3H]TdR incorporation of human normal glia cells in serum-free medium supplemented with human serum albumin. Optimal dose was 2 ng/ml for both dense and sparse cultures but dense cultures were stimulated by EGF to a much less extent than sparse cultures. Data are presented that make the possibility unlikely that the density dependent inhibition of the EGF response is due to depletion of EGF in the medium or a local, juxtacellular starvation for the factor.  相似文献   

5.
Serum-free mouse embryo cells, cultured in basal nutrient medium supplemented with insulin, transferrin, epidermal growth factor, fibronectin, and high-density lipoprotein, do not exhibit growth crisis, lack detectable chromosomal aberrations, are nontumorigenic in vivo, are dependent on epidermal growth factor for survival, and are growth inhibited by serum or platelet-free plasma. These cells after transfection with the human Ha-ras or rat neu oncogenes no longer required epidermal growth factor for survival, were tumorigenic in vivo, and also proliferated in serum-containing medium. Autocrine activity capable of replacing epidermal growth factor was detected in conditioned medium from ras-transformed cultures, but little such activity was detected in medium from neu-transformed cultures. In addition, the capability of ras or neu-transformed cells to grow in serum-containing medium could not be mimicked in untransformed cells by the addition of growth factors or conditioned medium from transformed cells. These results suggest that the known structural similarity of the neu gene product to the EGF receptor is also reflected in a functional similarity by which the mutationally activated neu protein can replace the ligand-activated EGF receptor. These results also suggest that the ability of ras- and neu-transformed cells to escape the effect of the inhibitory serum activity is a nonautocrine property distinct from the acquisition of EGF autonomy.  相似文献   

6.
Virgin rat mammary epithelium enriched for alveoli were embedded in a collagen gel matrix to study the direct effect of mammogenic hormones and epidermal growth factor (EGF) on their growth over a 12-day culture period. Serum-supplemented medium alone caused a 3- to 4-fold increase in cell number, whereas medium containing insulin, prolactin, progesterone, cholera toxin and serum caused a 15-fold increase. Cultures resulting from this substantial cell number increase consisted of large, smooth-bordered epithelial colonies with relatively few (< 1%) single cells surrounding them. An equal increase in cell number was obtained when progesterone was replaced by hydrocortisone in the above-mentioned medium, but these cultures contained predominantly single spindle-shaped cells with a few small epithelial colonies. The smooth-bordered epithelial colonies consisted solely of mammary epithelial cells, since they contained thioesterase II, an enzyme found exclusively in mammary epithelium. The identity of the single spindle-shaped cells remains to be determined. The addition of EGF to serum or serum, hormone and cholera toxin-supplemented medium did not enhance the proliferative effect of these factors on the alveolar-enriched population.  相似文献   

7.
To study early events in the central nervous system (CNS) cholinergic development, cells from rat basal forebrain tissue were placed in culture at an age when neurogenesis in vivo is still active [embryonic day (E) 15]. The rapid mortality of these cells in defined medium, with 50% mortality after 5-10 h, was blocked completely by soluble proteins from the olfactory bulb (a basal forebrain target), extending earlier observations (Lambert, Megerian, Garden, and Klein, 1988). Treated cultures were capable of incorporating thymidine into DNA, and most cells incorporating 3H-thymidine (greater than 90%) also stained positive for neurofilament, confirming neuronal proliferation in the supplemented cultures. A small percentage of 3H-thymidine labelled cells were glial fibrillary acidic protein (GFAP) positive, but growth factors that support astroglial proliferation [epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and insulin-like growth factor (IGF-1)] were not sufficient for neuronal support. After 5 culture days with supplemented medium, almost 50% of the cells showed choline acetyltransferase (ChAT) immunofluorescence. The cholinergic neurons typically formed clusters separate from noncholinergic cells. These mature cultures did not develop if young cultures were treated with aphidicolin to block DNA synthesis. The data show that cultures of very young rat basal forebrain cells can be neurogenic, giving rise to abundant cholinergic neurons, and that early cell proliferation is essential for long-term culture survival.  相似文献   

8.
Density-dependent growth control of adult rat hepatocytes in primary culture   总被引:11,自引:0,他引:11  
Adult rat hepatocytes in primary culture, which show various liver functions, did not show any mitosis at confluent cell density, although they entered the S phase and remained in the G2 phase, judging by cytofluorometry, when insulin and epidermal growth factor (EGF) were added to 2-day cultures (Tomita, Y., Nakamura, T., & Ichihara, A. (1981) Exp. Cell Res. 135, 363-371). However, when the cell density was decreased by half or one third, the number of nuclei and cell number increased to 1.5-2.0 times that after culture for 35 h with insulin and EGF. Moreover, at these lower densities, DNA synthesis started much earlier, although at the usual high density DNA synthesis with these two hormones did not start until the hepatocytes had been cultured for over 40 h. These results suggest that proliferation of mature rat hepatocytes is regulated by the cell density. First, cells in G0 enter the G1 phase density-dependently; then cells in the G1 phase seem to be stimulated to enter the S phase by insulin and EGF, and a low cell density may permit cells after DNA synthesis to enter the M phase. DNA synthesis of rat hepatocyte cultures at low cell density was strongly inhibited by co-culture with a dense culture. Therefore, the density-dependent mechanism of hepatocyte proliferation seems to involve regulation by a soluble inhibitor(s) secreted by the hepatocytes into the culture medium.  相似文献   

9.
Parathyroid hormone-related protein (PTHrP) plays a major role in the pathogenesis of malignant hypercalcemia, but has also been found in fetal and adult non-neoplastic tissues. Among them, lactating mammary gland was shown to produce PTHrP, and high levels of PTHrP were measured in milk. However, the regulation of PTHrP production by breast cells is still unknown. Primary cultures of mammary cells isolated from rat lactating glands were grown on collagen gels in an insulin/epidermal growth factor (EGF)-supplemented medium. Under these conditions, mammary cells displayed an epithelial phenotype and their number increased more than twofold after 1 week in culture. At that time, the cells were capable of producing immunoreactive PTHrP (range: 25 to 150 pg/10(5) cells x 24 h) and PTH-like bioactivity, as indicated by a 60% increase in cyclic adenosine monophosphate (cAMP) production induced by mammary epithelial cell conditioned medium in the PTH-responsive osteoblast-like UMR-106 cell line. When cell proliferation was hindered by lowering plating density, by removing medium supplements, or by adding transforming growth factor (TGF)-beta, a well-known autocrine inhibitor of mammary epithelial cell growth. PTHrP production was increased. In contrast, the omission of EGF or addition of specified anti-EGF antibodies decreased PTHrP production. In conclusion, primary cultures of mammary epithelial cells isolated from lactating rat were shown for the first time to produce PTHrP in vitro. This production was higher in the presence of EGF and could be modulated by cell growth rate.  相似文献   

10.
Connexin 43 (Cx43), a gap junction protein expressed in differentiated granulosa cells, is necessary for normal follicular development. Cx43 expression and regulation by epidermal growth factor (EGF) were characterized in immature rabbit granulosa cells. Cx43 mRNA was expressed in the granulosa cells of primary follicles, but was undetectable in primordial follicles. Abundant expression of Cx43 mRNA was maintained in the granulosa cells of growing follicles through maturity. Granulosa cells were isolated from early preantral follicles and maintained in monolayer cultures for 72 hr. After the first 24 hr of culture, they were maintained for 48 hr in serum-free medium supplemented with 0, 1, 5, or 10 ng/ml of mouse EGF. Granulosa cell proteins were isolated, solubilized, and evaluated for Cx43 by Western blot analysis using antibodies to rat Cx43. Relative amounts of Cx43 protein (both phosphorylated and nonphosphorylated) were increased (P < 0.05) by EGF in a dose-dependent manner. Northern blot analysis of RNA from cultured granulosa cells demonstrated increased amounts of Cx43 mRNA in the EGF treated cultures (10 ng EGF/ml) relative to controls (P < 0.03). In summary, Cx43 gap junctions are synthesized in granulosa cells following the onset of folliculogenesis in vivo and their expression is enhanced by EGF in vitro.  相似文献   

11.
Transformation of NIH/3T3 cells by Kirsten murine sarcoma virus (MSV) caused a dramatic reduction in the number of cell-surface receptors for epidermal growth factor (EGF). However, the number of EGF receptors remained at a very low level in a non-tumourigenic revertant cell line isolated from the virus-transformed cells, indicating that an increase in EGF receptors is not a requirement for the phenotypic reversion of Kirsten MSV-transformed 3T3 cells. Serum-free conditioned medium from normal and virus-transformed cell lines contained similar amounts of cell growth-promoting activity as assayed by the ability to stimulate DNA synthesis in quiescent Swiss 3T3 cell cultures. However, the concentrated conditioned medium from these cell lines showed no evidence of beta-transforming growth factor (TGF) activity as assayed by promotion of anchorage-independent growth of untransformed normal rat kidney (NRK) fibroblasts in agarose. The cellular release of alpha-TGF activity was assayed by measuring the ability of concentrated conditioned medium to inhibit the binding of 125I-EGF to Swiss 3T3 cells. Conditioned medium protein from the virus-transformed cell line inhibited 125I-EGF binding but only to the same extent as conditioned medium protein prepared from the untransformed cell line. The alpha-TGF secretion by these cell lines was estimated to be 30-45-fold lower than the level of alpha-TGF released by a well-characterized alpha-TGF-producing cell line (3B11). These results suggest that the induction of TGF release is not a necessary event in the transformation of NIH/3T3 cells by Kirsten MSV.  相似文献   

12.
Summary This report describes the development of a culture system for long-term growth and cloning of human fetal adrenocortical cells. Optimal conditions for stimulating clonal growth were determned by testing the efficacy of horse serum (HS), fetal bovine serum (FBS), fibroblast growth factor (FGF), epidermal growth factor (EGF), fibronectin, and a combination of growth factors, UltroSer G, in stimulating growth from low density. Optimal conditions for clonal growth were achieved using fibronectin-coated dishes and DME/F12 medium with 10% FEBS, 10% HS, 2% UltroSer G, and 100 ng/ml FGF or 100 pM EGF. Conditions for growth at clonal density were found to be optimal for growth of early passage, nonclonal cultures at higher densities. The improved growth conditions used for cloning were shown to allow continued long-term growth of nonclonal human adrenocortical cells without fibroblasts overgrowth. All cells in cultures grown in HS, FBS, and UltroSer G had morphologic characteristics of adrenocortical cells, whereas cells grown in FBS only rapidly became overgrown with fibroblasts. Clonal and nonclonal early passage human adrenocortical cells had smilar mitogenic responses to FGF and EGF. Whereas FGF, EGF, and UltroSer G showed similar stimulation of DNA synthesis and clonal growth in human adrenocortical cells and human adrenal gland fibroblasts, the tumor promoter 12-O-teradecanoylphorbol-13-acetate stimulated growth only in adrenocortical cells and was strongly inhibitory to growth in fibroblasts. In both cell types, forskolin inhibited DNA synthesis. Human adrenocortical cell cultures were functional and synthesized cortisol, dehydroepiandrosterone, and dehydroepiandrosterone sulfate. The improved growth conditions for clonal growth of human adrenocortial cells also provided optimal conditions for long-term growth of cultured rat adrenocortical cells and ncreased the cloning efficiency of cultured bovine adrenocortical cells. This work was supported by Research grants AG-00936 and AG-06108 from the National Institute on Aging, Bethesda, MD.  相似文献   

13.
Extensive evidence indicate that platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) play a key role in the stimulation of the 3T3 fibroblast replication: in this connection, PDGF and EGF act as a competence and a progression factor, respectively. We have previously demonstrated that EGF alone leads density-arrested EL2 rat fibroblasts to synthesize DNA and proliferate in serum-free cultures. Here, we have analyzed the role of EGF in the control of EL2 cell proliferation. Our data show a dose-related effect of EGF on DNA synthesis and cell growth, with maximal stimulation for both parameters at 20 ng/ml. On the other hand, autocrine production of PDGF or PDGF-like substances by EL2 cells is seemingly excluded by experiments with anti-PDGF serum or medium conditioned by EL2 fibroblasts. EGF binding studies show that EL2 cells possess high affinity EGF receptors, at a density level 3 to 4-fold higher than other fibroblastic lines. In addition, EL2 cells show a normal down-regulation of EGF receptors, following exposure to EGF, but PDGF, fibroblast growth factor (FGF), transforming growth factor beta (TGF beta) and bombesin have not decreased the affinity of EGF receptor for its ligand. Moreover, in EL2 cells, the EGF is able to induce the synthesis of putative intracellular regulatory proteins that govern the PDGF-induced competence in 3T3 cells. Our data indicate that EGF in EL2 cells may act as both a competence and a progression factor, via induction of the mechanisms, regulated in other cell lines by cooperation between different growth factors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
To study early events in the central nervous system (CNS) cholinergic development, cells from rat basal fore brain tissue were placed in culture at an age when neurogenesis in vivo is still active [embryonic day (E) 15]. The rapid mortality of these cells in defined medium, with 50% mortality after 5–10 h, was blocked completely by soluble proteins from the olfactory bulb (a basal forebrain target), extending earlier observations (Lambert, Megerian, Garden, and Klein, 1988). Treated cultures were capable of incorporating thymidine into DNA, and most cells incorporating 3H-thymidine (>90%) also stained positive for neurofilament, confirming neuronal proliferation in the supplemented cultures. A small percentage of 3H-thymidine labelled cells were glial fibrillary acidic protein (GFAP) positive, but growth factors that support astroglial proliferation [epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and insulin-like growth factor (IGF-1)] were not sufficient for neuronal support. After 5 culture days with supplemented medium, almost 50% of the cells showed choline acetyltransferase (ChAT) immunofluorescence. The cholinergic neurons typically formed clusters separate from noncholinergic cells. These mature cultures did not develop if young cultures were treated with aphidicolin to block DNA synthesis. The data show that cultures of very young rat basal forebrain cells can be neurogenic, giving rise to abundant cholinergic neurons, and that early cell proliferation is essential for long-term culture survival.  相似文献   

15.
Primary cultures of adult rat hepatocytes, grown in modified minimal essential medium (Eagle's) containing 10% calf serum, could be induced into DNA replication by combinations of epidermal growth factor (EGF), insulin and glucagon. The three hormones acted synergistically, and cells began entering DNA synthesis 48 h after hormone addition. The ability of the hormones to stimulate DNA synthesis was enhanced by plating cells at high cell concentrations or by conditioned medium, and was diminished by daily medium change. The contribution of glucagon to DNA synthesis was replaced by cAMP plus 1-methyl, 3-isobutyl xanthine or by adrenergic agents. Evidence is presented which suggests that all three hormones are required on the first day of culture, and that EGF and insulin are also required after the first day. This appears to be a useful system for studies on the hormonal initiation of growth in quiescent cells.  相似文献   

16.
Possible roles of dibutyryladenosine 3',5'-cyclic monophosphate (cAMP) and dibutyryl-guanosine 3',5'-cyclic monophosphate (cGMP) in regulation of hepatocyte DNA synthesis were examined using primary cultures of young-adult rat hepatocytes maintained in arginine-free medium. Throughout the experimental period, nonparenchymal cells were hardly observed in the selective medium. When epidermal growth factor (EGF) was added to the cultures, a transient increase in the intracellular cAMP level preceded the elevation of hepatocyte DNA synthesis. EGF-stimulated hepatocyte DNA synthesis was remarkably enhanced by the elevation of the intracellular cAMP level induced by treatment with cAMP alone or a combination of cAMP and theophylline, an inhibitor of cyclic nucleotide phosphodiesterase. Furthermore, the early elevation of intracellular cAMP alone, which was induced by treatment with the combination of cAMP and theophylline, caused a remarkable increase in hepatocyte DNA synthesis. On the other hand, addition of EGF to the cultures caused a rapid decrease in the intracellular cGMP level followed by an increase in hepatocyte DNA synthesis. EGF-stimulated hepatocyte DNA synthesis was severely suppressed or completely inhibited by the elevation of the intracellular cGMP level induced by treatment with cGMP alone or a combination of cGMP and dipyridamole, a specific inhibitor of cGMP phosphodiesterase. These findings indicate that cAMP and cGMP act oppositely on the regulation of DNA synthesis of young-adult rat hepatocytes in primary culture: cAMP plays a positive role, whereas cGMP plays a negative role. Also it is strongly suggested that an early elevation of the intracellular cAMP level is essential for the onset of DNA synthesis in hepatocyte primary cultures.  相似文献   

17.
Two flat cellular revertant cell lines, F-2 and C-11, which were originally selected from the DT line of Kirsten murine sarcoma virus (Ki-MuSV)-transformed NIH/3T3 cells, were examined for the production of transforming growth factors (TGFs). The revertant cells fail to grow in semisolid medium as colonies and exhibit a markedly reduced level of tumorigenicity in nude mice, although they are known to express high levels of p21ras, the product of the Kirsten sarcoma virus oncogene, ras, and they contain a rescuable transforming virus. TGF activity associated with the transformed, revertant, and non-transformed cell lines was measured by the ability of concentrated conditioned medium (CM) from these cells to induce normal rat kidney (NRK) and NIH/3T3 cells to form colonies in semisolid agar suspension cultures and to inhibit the binding of 125I epidermal growth factor (EGF) to specific cell surface receptors. CM from the transformed DT cells and from both the F-2 and C-11 revertants contains TGF activity, in contrast to CM obtained from normal NIH/3T3 cells. Furthermore, unlike NIH/3T3 cells, neither the DT nor the revertant cells were able to bind 125I EGF. All four cell lines were able to proliferate in serum-free medium supplemented with transferrin, insulin, EGF, and Pedersen fetuin. However, in basal medium lacking these growth factors, only DT cells and, to a lesser extent, the revertant cells were able to grow. These results suggest that the F-2 and C-11 revertants fail to exhibit all of the properties associated with transformation because the series of events leading to the transformed phenotype is blocked at a point(s) distal both to the expression of the p21 ras gene product and also to the production of TGFs and that the production of TGFs may be necessary but not sufficient for maintaining the transformed state.  相似文献   

18.
The alteration of collagen components in clone MC3T3-E1 cells by epidermal growth factor (EGF) was investigated immunocytochemically, using antibodies to type I and type III collagens. EGF transformed those cells that had become more slender than those of control cultures. Type I and type III collagens were observed in the same cells in both EGF-treated and control cultures. Type I collagen was decreased by EGF, whereas type III collagen appeared to be increased. However, no cells with only type III collagen were observed, suggesting that EGF influences collagen metabolism in clone MC3T3-E1 cells.  相似文献   

19.
20.
The mitotic effects of epidermal growth factor (EGF) were investigated in two cultured fibroblast lines, BALB/c-3T3 and C3H 10T1/2 cells. EGF (30 ng/ml) added to quiescent 3T3 cells in medium containing either platelet-poor plasma or 10(-5) M insulin caused only minimal increases in the percentage of cells stimulated to initiate DNA synthesis. In contrast, EGF acted synergistically with either insulin or plasma to stimulate DNA synthesis in quiescent cultures of 10T1/2 cells, although the maximum effects of EGF were measured at concentrations several-fold greater than those found in either serum or plasma. In either 3T3 or 10T1/2 cells a transient preexposure to platelet-derived growth factor (PDGF) caused over a 10-fold increase in the sensitivity to the mitogenic effects of EGF. It is therefore possible that a primary action of PDGF is to increase the sensitivity of fibroblasts to EGF, independent of whether EGF alone is found to be mitogenic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号