首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims: To study the bacterial diversity associated with hydrocarbon biodegradation potentiality and biosurfactant production of Tunisian oilfields bacteria. Methods and Results: Eight Tunisian hydrocarbonoclastic oilfields bacteria have been isolated and selected for further characterization studies. Phylogenetic analysis revealed that three thermophilic strains belonged to the genera Geobacillus, Bacillus and Brevibacillus, and that five mesophilic strains belonged to the genera Pseudomonas, Lysinibacillus, Achromobacter and Halomonas. The bacterial strains were cultivated on crude oil as sole carbon and energy sources, in the presence of different NaCl concentrations (1, 5 and 10%, w/v), and at 37 or 55°C. The hydrocarbon biodegradation potential of each strain was quantified by GC–MS. Strain C450R, phylogenetically related to the species Pseudomonas aeruginosa, showed the maximum crude oil degradation potentiality. During the growth of strain C450R on crude oil (2%, v/v), the emulsifying activity (E24) and glycoside content increased and reached values of 77 and 1·33 g l?1, respectively. In addition, the surface tension (ST) decreased from 68 to 35·1 mN m?1, suggesting the production of a rhamnolipid biosurfactant. Crude biosurfactant had been partially purified and characterized. It showed interest stability against temperature and salinity increasing and important emulsifying activity against oils and hydrocarbons. Conclusions: The results of this study showed the presence of diverse aerobic bacteria in Tunisian oilfields including mesophilic, thermophilic and halotolerant strains with interesting aliphatic hydrocarbon degradation potentiality, mainly for the most biosurfactant produced strains. Significance and Impact of the Study: It may be suggested that the bacterial isolates are suitable candidates for practical field application for effective in situ bioremediation of hydrocarbon‐contaminated sites.  相似文献   

2.
Using enrichment culture technique, two isolates that brought a significant degradation and dispersion of crude oil were obtained from contaminated sediments of the Bohai Bay, China. 16S rRNA gene sequencing and phylogenetic analysis indicated that the two bacterial strains affiliated with the genera Vibrio and Acinetobacter. Subsequently, the bacterial cells were immobilized on the surface of cotton fibers. Cotton fibers were used as crude oil sorbent as well as a biocarrier for bacteria immobilization. Among the two isolates, the marine bacteria Acinetobacter sp. HC8-3S showed a strong binding to the cotton fibers, possibly enhanced through extracellular dispersant excreted by Acinetobacter sp. HC8-3S. Both planktonic and immobilized bacteria showed relatively high biodegradation (>60%) of saturated hydrocarbons fraction of crude oil, in the pH range of 5.6–8.6. The degradation activities of planktonic and immobilized bacteria were not affected significantly when the NaCl concentration reached 70 g/L. The immobilized bacterial cells exhibited an enhanced biodegradation of crude oil. The efficiency of saturated hydrocarbons degradation by the immobilized bacterial cells increased about 30% compared to the planktonic bacterial cells.  相似文献   

3.
Whole‐cell biosensors offer potentially useful, cost‐effective systems for the in‐situ monitoring of seawater for hydrocarbons derived from accidental spills. The present work compares the performance of a biosensor system for the detection of alkanes in seawater, hosted in either Escherichia coli (commonly employed in whole‐cell biosensors but not optimized for alkane assimilation) or different marine bacteria specialized in assimilating alkanes. The sensor system was based on the Pseudomonas putida AlkS regulatory protein and the PalkB promoter fused to a gene encoding the green fluorescent protein. While the E. coli sensor provided the fastest response to pure alkanes (25‐fold induction after 2 h under the conditions used), a sensor based on Alcanivorax borkumensis was slower, requiring 3–4 h to reach similar induction values. However, the A. borkumensis sensor showed a fourfold lower detection threshold for octane (0.5 μM), and was also better at sensing the alkanes present in petrol. At petrol concentrations of 0.0125%, the A. borkumensis sensor rendered a sevenfold induction, while E. coli sensor showed no response. We discuss possible explanations to this behaviour in terms of the cellular adaptations to alkane uptake and the basal fluorescence produced by each bacterial strain, which was lowest for A. borkumensis.  相似文献   

4.
In this study biodegradation of hydrocarbons in thin oil films was investigated in seawater at low temperatures, 0 and 5 °C. Heterotrophic (HM) or oil-degrading (ODM) microorganisms enriched at the two temperatures showed 16S rRNA sequence similarities to several bacteria of Arctic or Antarctic origin. Biodegradation experiments were conducted with a crude mineral oil immobilized as thin films on hydrophobic Fluortex adsorbents in nutrient-enriched or sterile seawater. Chemical and respirometric analysis of hydrocarbon depletion showed that naphthalene and other small aromatic hydrocarbons (HCs) were primarily biodegraded after dissolution to the water phase, while biodegradation of larger polyaromatic hydrocarbons (PAH) and C10–C36 n-alkanes, including n-hexadecane, was associated primarily with the oil films. Biodegradation of PAH and n-alkanes was significant at both 0 and 5°C, but was decreased for several compounds at the lower temperature. n-Hexadecane biodegradation at the two temperatures was comparable at the end of the experiments, but was delayed at 0°C. Investigations of bacterial communities in seawater and on adsorbents by PCR amplification of 16S rRNA gene fragments and DGGE analysis indicated that predominant bacteria in the seawater gradually adhered to the oil-coated adsorbents during biodegradation at both temperatures. Sequence analysis of most DGGE bands aligned to members of the phyla Proteobacteria (Gammaproteobacteria) or Bacteroidetes. Most sequences from experiments at 0°C revealed affiliations to members of Arctic or Antarctic consortia, while no such homology was detected for sequences from degradation experiment run at 5°C. In conclusion, marine microbial communities from cold seawater have potentials for oil film HC degradation at temperatures ≤5°C, and psychrotrophic or psychrophilic bacteria may play an important role during oil HC biodegradation in seawater close to freezing point.  相似文献   

5.
Microbial communities were characterized during biodegradation of immobilized oil in seawater from the Statfjord field and the German Bight in the North Sea. Seawater samples were collected at different distances from pollution sources at the two locations. A Statfjord oil was immobilized on hydrophobic synthetic Fluortex fabrics and submerged in closed flasks (no headspace) with natural or sterile seawater and incubated at 13°C for 56 days. Biodegradation of immobilized n-alkanes was measured by gas chromatography, total microbes were enumerated by epifluorescence microscopy, and culturable heterotrophic and oil-degrading microorganisms were quantified by most probable number (MPN) analysis. Polymerase chain reaction (PCR) amplification of bacterial 16S rDNA in water samples was conducted during biodegradation experiments. The amplified 16S rDNA fragments were characterized by denaturing gradient gel electrophoresis (DGGE), and by sequence analysis of cloned inserts. Biodegradation rates of alkanes in seawater collected at different distances from the pollution sources did not differ significantly (P > 0.05). Concentrations of oil-degrading microorganisms showed a temporary peak after 7 days of degradation, with a subsequent decline later in the period. DGGE analysis of 16S rRNA genes showed that community diversity decreased during the first 2–3 weeks of biodegradation, with the emergence of a few dominant bands. Cloning, restriction analysis, and sequence analysis of the 16S rDNA fragments revealed >30 different phylotypes. Abundant types during biodegradation belonged to the -Proteobacteria, in waters from both Statfjord and the German Bight. Cloning and sequencing studies indicated that the most abundant bacteria during biodegradation belonged to the family Rhodobacteraceae, with the closest relationship to the genera Sulfitobacter and Roseobacter.  相似文献   

6.
A strain of long-chain alkane–degrading bacteria, BT1A, was isolated from oil-contaminated soil in Diyarbak?r, in the southeast of Turkey. Morphological, biochemical, and physiological characterization and 16S rRNA gene sequence analysis showed that the strain BT1A was a member of Acinetobacter genus, and it was found to be closely related to Acinetobacter baumannii. The strain BT1A was able to utilize crude petroleum as carbon and energy sources in order to grow. Among the aliphatic hydrocarbons, growth was observed only in the medium containing long-chain alkanes (tridecane, pentadecane, and hexadecane) and squalene. Hexadecane was the most preferred hydrocarbon among the long-chain alkanes. Gas chromatography–mass spectrometry (GC-MS) analysis showed that BT1A degraded 83% of n-alkanes of 1% crude oil in 7 days. The present study indicates that the isolated strain can well be used for biodegradation of hydrocarbons in oil-contaminated sites.  相似文献   

7.
The assimilation of the nearly water insoluble substrates hydrocarbons and lipids by bacteria entails specific adaptations such as the formation of oleolytic biofilms. The present article reports that the extracellular matrix of an oleolytic biofilm formed by Marinobacter hydrocarbonoclasticus at n‐hexadecane–water interfaces is largely composed of proteins typically cytoplasmic such as translation factors and chaperones, and a lesser amount of proteins of unknown function that are predicted extra‐cytoplasmic. Matrix proteins appear to form a structured film on hydrophobic interfaces and were found mandatory for the development of biofilms on lipids, alkanes and polystyrene. Exo‐proteins secreted through the type‐2 secretion system (T2SS) were shown to be essential for the formation of oleolytic biofilms on both alkanes and triglycerides. The T2SS effector involved in biofilm formation on triglycerides was identified as a lipase. In the case of biofilm formation on n‐hexadecane, the T2SS effector is likely involved in the mass transfer, capture or transport of alkanes. We propose that M. hydrocarbonoclasticus uses cytoplasmic proteins released by cell lysis to form a proteinaceous matrix and dedicated proteins secreted through the T2SS to act specifically in the assimilation pathways of hydrophobic substrates.  相似文献   

8.
While phospholipid fatty acid (PLFA) profiling is a well‐established method used for the determination of bacterial and eukaryotic organisms in soil ecology, phospholipid etherlipid (PLEL) analyses for the characterisation of Archaea is a rather new approach. Analyses of PLEL derived isoprenoid side chains by GC/MS provided a broad picture of the archaeal community in a mixed soil extract, as lipids previously identified in isolates belonging to the kingdoms Eury‐ and Crenarchaeota were covered. Furthermore, ether‐linked isoprenoid hydrocarbons, which have not been detected in archaeal isolates and monomethyl‐branched alkanes which have only been found in hyperthermophilic bacteria, were detected in these soil extracts. Monomethyl‐branched alkanes were the most dominant ones and accounted for 43.4% of the total identified ether‐linked hydrocarbons, followed by straight chain (unbranched) and isoprenoid hydrocarbons, which accounted for 34.6 and 15.5%, respectively.  相似文献   

9.
It is demonstrated that aliphatic hydrocarbons (alkanes) penetrate into bacteria cells by the way of passive diffusion. The mechanism of this process is different for several bacteria species. A hydrophobic cell wall is essential for that process. In saprophytic Mycobacteria hydrocarbons are solubilized in the thick hydrophobic cell wall. During the process of absorption hydrocarbons pass through the whole cell wall up to the membrane. In the case of Arthrobacteria the hydrocarbons might pass not through the whole cell wall, but through special lipophilie canals. Mobile hydrocarbon-oxidizing bacteria g. Pseudomonas form peptidoglycolipid and excrete it into the medium. The peptidoglycolipid emulsifies hydrocarbon substrate.  相似文献   

10.
Expression of sfp gene and hydrocarbon degradation by Bacillus subtilis   总被引:5,自引:0,他引:5  
Bacillus subtilis C9 produces a lipopeptide-type biosurfactant, surfactin, and rapidly degrades alkanes up to a chain length of C19. The nucleotide sequence of the sfp gene cloned from B. subtilis C9 was determined and its deduced amino acid sequence showed 100% homology with the sfp gene reported before [Nakano et al. (1992) Mol. Gen. Genet. 232: 313–321]. To transform a non-surfactin producer, B. subtilis 168, to a surfactin producer, the sfp gene cloned from B. subtilis C9 was expressed in B. subtilis 168. The transformed B. subtilis SB103 derivative of the strain 168 was shown to produce surfactin measured by its decrease in surface tension, emulsification activity, and TLC analysis of the surface active compound isolated from the culture broth. Like B. subtilis C9, B. subtilis SB103 containing sfp gene readily degraded aliphatic hydrocarbons (C10–19), though its original strain did not. The addition of surfactin (0.5%, w/v) to the culture of B. subtilis 168 significantly stimulated the biodegradation of hydrocarbons of the chain lengths of 10–19; over 98% of the hydrocarbons tested were degraded within 24 h of incubation. These results indicate that the lipopeptide-type biosurfactant, surfactin produced from B. subtilis enhances the bioavailability of hydrophobic hydrocarbons.  相似文献   

11.
The biodegradability of petroleum hydrocarbons such as polycyclic aromatic hydrocarbons (PAHs) and n-branched alkanes etc. of 2T engine oil were studied in aqueous media using bacterial strain isolated from petroleum contaminated soil of high altitude. Out of five petroleum degrading bacterial strain one of the most growing bacteria was identified as Enterobacter strain by morphological, physiological, biochemical and partial sequencing of 16S rDNA. This strain was capable of degrading 75 ± 3% of n-alkanes, 32 ± 5% PAHs, and the abiotic loss was 24 ± 6% during 10 days incubation period. 85 ± 2% of n-alkanes and 51 ± 3% PAHs were biodegraded in 20 days. The abiotic loss during this period was 15 ± 3%. In 30 days of incubation period 98% ± 1% n-alkanes and 75 ± 3% PAHs were degraded. As expected abiotic losses were smaller with increasing long chain alkanes and PAH’s concentration. An increment in oil degradation was correlated to an increase in cell number indicating that the bacterial isolate was responsible for the oil degradation. The hydrocarbon contents were measured by Shimadzu QP-2000 Gas chromatography/mass spectrometry by ULBON HR-1 column.  相似文献   

12.
This study examined the capacity of immobilized bacteria to degrade petroleum hydrocarbons. A mixture of hydrocarbon-degrading bacterial strains was immobilized in alginate and incubated in crude oil-contaminated artificial seawater (ASW). Analysis of hydrocarbon residues following a 30-day incubation period demonstrated that the biodegradation capacity of the microorganisms was not compromised by the immobilization. Removal of n-alkanes was similar in immobilized cells and control cells. To test reusability, the immobilized bacteria were incubated for sequential increments of 30 days. No decline in biodegradation capacity of the immobilized consortium of bacterial cells was noted over its repeated use. We conclude that immobilized hydrocarbon-degrading bacteria represent a promising application in the bioremediation of hydrocarbon-contaminated areas.  相似文献   

13.
Biodegradation of alkyl-substituted adamantane derivatives (1-methyl, 1,3-dimethyl-, and 1,3,5-trimethyladamantane) by slow-growing bacteria Mycobacterium AGS10 was studied. The process was carried out under extremely acidic conditions (pH 2.5). Bacterial strain AGS10 was able to utilize these alicyclic hydrocarbons with a high degree of condensation and diamond-like structure, which are usually resistant to microbial transformation. Efficiency of alkyaldamantane biodegradation by the cells growing with these substrates as the sole carbon and energy sources was affected significantly by their aggregate state, which depended on molecular structure. Compared to the solid 1-methyladamantane, 1,3-dimethyladamantane, which is liquid under normal conditions, was a preferable substrate. Adamantanes in the gas condensate were generally more resistant to bacterial degradation than such markers as normal and isoprenoid alkanes. Moreover, biodegradation had no significant effect on relative distribution of the tested С11–С13 alkyladamantanes.  相似文献   

14.
A laboratory experiment was conducted to identify key hydrocarbon degraders from a marine oil spill sample (Prestige fuel oil), to ascertain their role in the degradation of different hydrocarbons, and to assess their biodegradation potential for this complex heavy oil. After a 17-month enrichment in weathered fuel, the bacterial community, initially consisting mainly of Methylophaga species, underwent a major selective pressure in favor of obligate hydrocarbonoclastic microorganisms, such as Alcanivorax and Marinobacter spp. and other hydrocarbon-degrading taxa (Thalassospira and Alcaligenes), and showed strong biodegradation potential. This ranged from >99% for all low- and medium-molecular-weight alkanes (C15–C27) and polycyclic aromatic hydrocarbons (C0- to C2- naphthalene, anthracene, phenanthrene, dibenzothiophene, and carbazole), to 75–98% for higher molecular-weight alkanes (C28–C40) and to 55–80% for the C3 derivatives of tricyclic and tetracyclic polycyclic aromatic hydrocarbons (PAHs) (e.g., C3-chrysenes), in 60 days. The numbers of total heterotrophs and of n-alkane-, aliphatic-, and PAH degraders, as well as the structures of these populations, were monitored throughout the biodegradation process. The salinity of the counting medium affects the counts of PAH degraders, while the carbon source (n-hexadecane vs. a mixture of aliphatic hydrocarbons) is a key factor when counting aliphatic degraders. These limitations notwithstanding, some bacterial genera associated with hydrocarbon degradation (mainly belonging to α- and γ-Proteobacteria, including the hydrocarbonoclastic Alcanivorax and Marinobacter) were identified. We conclude that Thalassospira and Roseobacter contribute to the degradation of aliphatic hydrocarbons, whereas Mesorhizobium and Muricauda participate in the degradation of PAHs.  相似文献   

15.
Biodegradation of poorly water-soluble liquid hydrocarbons is often limited by low availability of the substrate to microbes. Adhesion of microorganisms to an oil–water interface can enhance this availability, whereas detaching cells from the interface can reduce the rate of biodegradation. The capability of microbes to adhere to the interface is not limited to hydrocarbon degraders, nor is it the only mechanism to enable rapid uptake of hydrocarbons, but it represents a common strategy. This review of the literature indicates that microbial adhesion can benefit growth on and biodegradation of very poorly water-soluble hydrocarbons such as n-alkanes and large polycyclic aromatic hydrocarbons dissolved in a non-aqueous phase. Adhesion is particularly important when the hydrocarbons are not emulsified, giving limited interfacial area between the two liquid phases. When mixed communities are involved in biodegradation, the ability of cells to adhere to the interface can enable selective growth and enhance bioremediation with time. The critical challenge in understanding the relationship between growth rate and biodegradation rate for adherent bacteria is to accurately measure and observe the population that resides at the interface of the hydrocarbon phase.  相似文献   

16.
In this work, crude oil biodegradation has been optimized in a solid‐liquid two phase partitioning bioreactor (TPPB) by applying a response surface methodology based d ‐optimal design. Three key factors including phase ratio, substrate concentration in solid organic phase, and sodium chloride concentration in aqueous phase were taken as independent variables, while the efficiency of the biodegradation of absorbed crude oil on polymer beads was considered to be the dependent variable. Commercial thermoplastic polyurethane (Desmopan®) was used as the solid phase in the TPPB. The designed experiments were carried out batch wise using a mixed acclimatized bacterial consortium. Optimum combinations of key factors with a statistically significant cubic model were used to maximize biodegradation in the TPPB. The validity of the model was successfully verified by the good agreement between the model‐predicted and experimental results. When applying the optimum parameters, gas chromatography‐mass spectrometry showed a significant reduction in n‐alkanes and low molecular weight polycyclic aromatic hydrocarbons. This consequently highlights the practical applicability of TPPB in crude oil biodegradation. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:797–805, 2014  相似文献   

17.
Phytoplankton have been shown to harbour a diversity of hydrocarbonoclastic bacteria (HCB), yet it is not understood how these phytoplankton‐associated HCB would respond in the event of an oil spill at sea. Here, we assess the diversity and dynamics of the bacterial community associated with a natural population of marine phytoplankton under oil spill‐simulated conditions, and compare it to that of the free‐living (non phytoplankton‐associated) bacterial community. While the crude oil severely impacted the phytoplankton population and was likely conducive to marine oil snow formation, analysis of the MiSeq‐derived 16S rRNA data revealed dramatic and differential shifts in the oil‐amended communities that included blooms of recognized HCB (e.g., Thalassospira, Cycloclasticus), including putative novel phyla, as well as other groups with previously unqualified oil‐degrading potential (Olleya, Winogradskyella, and members of the inconspicuous BD7‐3 phylum). Notably, the oil biodegradation potential of the phytoplankton‐associated community exceeded that of the free‐living community, and it showed a preference to degrade substituted and non‐substituted polycyclic aromatic hydrocarbons. Our study provides evidence of compartmentalization of hydrocarbon‐degrading capacity in the marine water column, wherein HCB associated with phytoplankton are better tuned to degrading crude oil hydrocarbons than that by the community of planktonic free‐living bacteria.  相似文献   

18.
The roles of the extracellular biosurfactants produced by two bacterial strains, Pseudomonas aeruginosa GL1 and Rhodococcus equi Ou2, in hexadecane uptake and biodegradation were compared. For this purpose, cell hydrophobicity and production of glycolipidic biosurfactants were evaluated during bacterial growth on hexadecane, as well the effects of these biosurfactants on culture supernatants properties i.e., surface and interfacial tensions, and emulsification and pseudosolubilization capacities. The results showed that the role of biosurfactants was different in these two strains and was directly related to the hydrophobicity of the bacterial cells concerned. Extracellular biosurfactants produced by strain R. equi Ou2 had only a minor role in hexadecane degradation. Direct interfacial accession appeared to be the main mechanism for hexadecane uptake by the hydrophobic cells of strain R. equi Ou2. On the contrary, the biosurfactants produced by P. aeruginosa GL1 were required for growth on hexadecane, and their pseudosolubilization capacity rather than their emulsification capacity was involved in substrate degradation, allowing uptake from hexadecane micelles by the hydrophilic cells of this bacterium. The roles of biosurfactants thus differ widely among bacteria degrading hydrophobic compounds. J.-P. Vandecasteele—in retirement  相似文献   

19.
The biodegradation of high explosive production effluent containing RDX (royal demolition explosive) and HMX (high melting-point explosive) in the presence of denitrifying bacterial isolates was investigated. The effluent collected from HMX production plant containing acetic acid, ammonium nitrate and explosive residue with water and other organic nitro bodies was used. The diluted and neutralized effluent was subjected to biodegradation using Pseudomonas (HPB1) and two Bacillus (HPB2, HPB3) denitrifying bacterial isolates. Samples were analysed by HPLC for qualitative and quantitative analysis of remaining RDX and HMX. The results indicate that the HMX and RDX was biodegraded under denitrifying conditions. The isolate Pseudomonas (HPB1) was found to be an efficient biodegrading strain for HMX. However, the isolate Pseudomonas (HPB1) was found to have lower biodegradation activity for RDX as compared to the denitrifying strain Bacillus (HPB2). Denitrifying bacteria Bacillus (HPB2) was found to be the most efficient strain for the biodegradation of RDX and HMX containing effluent neutralized with sodium bicarbonate. The biotransformation activity for HMX and RDX was lower for the isolate Bacillus (HPB2) in the effluent neutralized with ammonia. Removal of nitrate from the effluent containing HMX and RDX by the three denitrifying bacteria was also studied. Denitrifying bacteria Pseudomonas (HPB1) showed the maximum nitrate reduction in the presence of both the neutralizing agents- sodium bicarbonate and ammonia.  相似文献   

20.
The pulp and paper industry largely depends on the biodegradation activities of heterotrophic bacteria to remove organic contaminants in wastewater prior to discharge. Our recent discovery of extensive cyanobacterial communities in pulp and paper waste treatment systems led us to investigate the potential impacts of cyanobacterial exudates on growth and biodegradation efficiency of three bacterial heterotrophs. Each of the three assessed bacteria represented different taxa commonly found in pulp and paper waste treatment systems: a fluorescent Pseudomonad, an Ancylobacter aquaticus strain, and a Ralstonia eutropha strain. They were capable of utilizing phenol, dichloroacetate (DCA), or 2,4-dichlorophenoxyacetic acid (2,4-D), respectively. Exudates from all 12 cyanobacterial strains studied supported the growth of each bacterial strain to varying degrees. Maximum biomass of two bacterial strains positively correlated with the total organic carbon content of exudate treatments. The combined availability of exudate and a known growth substrate (i.e., phenol, DCA, or 2,4-D) generally had a synergistic affect on the growth of the Ancylobacter strain, whereas mixed effects were seen on the other two strains. Exudates from four representative cyanobacterial strains were assessed for their impacts on phenol and DCA biodegradation by the Pseudomonas and Ancylobacter strains, respectively. Exudates from three of the four cyanobacterial taxa repressed phenol biodegradation, but enhanced DCA biodegradation. These dissimilar impacts of cyanobacterial exudates on bacterial degradation of contaminants suggest a species-specific association, as well as a significant role for cyanobacteria during the biological treatment of wastewaters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号