首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
4-Keto-D-arabonate (D-threo-pent-4-ulosonate) and 4-keto-D-ribonate (D-erythro-pent-4-ulosonate) were prepared from D-arabinose and D-ribose by two successive reactions of membrane-bound enzymes, D-aldopentose 4-dehydrogenase and 4-keto-D-aldopentose 1-dehydrogenase of Gluconobacter suboxydans IFO 12528. Alternatively, they were prepared from D-arabonate and D-ribonate with another membrane-bound enzyme, D-pentonate 4-dehydrogenase. Analytical data confirmed the chemical structures of the 4-pentulosonates prepared. This is the first report of successful enzymatic synthesis of 4-pentulosonates.  相似文献   

2.
Production of 4-keto-D-arabonate (4KAB) was confirmed in a culture medium of Gluconacetobacter liquefaciens strains, newly isolated from water kefir in Argentina. The strains rapidly oxidized D-glucose, D-gluconate (GA), and 2-keto-D-gluconate (2KGA), and accumulated 2,5-diketo-D-gluconate (25DKA) exclusively before reaching the stationary phase. 25DKA was in turn converted to 4KAB, and 4KAB remained stable in the culture medium. The occurrence of 4KAB was assumed by Ameyama and Kondo about 50 years ago in their study on the carbohydrate metabolism of acetic acid bacteria (Bull. Agr. Chem. Soc. Jpn., 22, 271-272, 380-386 (1958)). This is the first report confirming microbial production of 4KAB.  相似文献   

3.
A novel oxidation of D-pentonates to 4-keto-D-pentonates was analyzed with Gluconobacter thailandicus NBRC 3258. D-Pentonate 4-dehydrogenase activity in the membrane fraction was readily inactivated by EDTA and it was reactivated by the addition of PQQ and Ca2+. D-Pentonate 4-dehydrogenase was purified to two different subunits, 80 and 14 kDa. The absorption spectrum of the purified enzyme showed no typical absorbance over the visible regions. The enzyme oxidized D-pentonates to 4-keto-D-pentonates at the optimum pH of 4.0. In addition, the enzyme oxidized D-fructose to 5-keto-D-fructose, D-psicose to 5-keto-D-psicose, including the other polyols such as, glycerol, D-ribitol, D-arabitol, and D-sorbitol. Thus, D-pentonate 4-dehydrogenase was found to be identical with glycerol dehydrogenase (GLDH), a major polyol dehydrogenase in Gluconobacter species. The reaction versatility of quinoprotein GLDH was notified in this study.  相似文献   

4.
2,5-Diketo-D-gluconate reductase, a novel enzyme that catalyzes the stereospecific NADPH-dependent reduction of 2,5-diketo-D-gluconate to 2-keto-L-gulonate, has been purified to homogeneity by sequential anion exchange, Cibacron blue F3GA affinity, and gel permeation chromatography from Corynebacterium sp. ATCC 31090. Molecular weight of the native form, determined by gel permeation chromatography, is 35,000 +/- 2,000. The subunit molecular weight, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis is 34,000; thus, the enzyme is active as a monomer. A pI value of 4.4 is measured for the enzyme. Amino- and carboxyl-terminal sequences are consistent with that predicted by the DNA sequence of the reductase gene. At 25 degrees C, pH 6.4, the turnover number is 500 min-1, and the apparent Km values for 2,5-diketo-D-gluconate and NADPH are 26 mM and 10 microM, respectively. The enzyme is specific for NADPH, but the sugar binding site will also accept 5-keto-D-fructose and dihydroxyacetone as substrates. The enzyme is active over a broad pH range (pH 5-8) for the reduction of 2,5-diketo-D-gluconate; a sharp optimum at pH 9.2 is observed for the oxidation of 2-keto-L-gulonate. A Keq value of 5.6 X 10(-13) M indicates that reduction of substrate by NADPH is highly preferred. An activation energy of 12.3 kcal mol-1 is measured. Enzyme turnover is slow relative to dehydration of the gem-diol at C-5 of the substrate.  相似文献   

5.
 Gram-positive Rhodococcus erythropolis strain S1 formed enzymes for the degradation of phthalate when grown in a phthalate-containing minimal medium. The membrane fraction prepared from phthalate-grown cells by ultrasonication converted phthalate to protocatechuate as the final product. Using two membrane-bound enzymes, phthalate 3,4-dioxygenase (PO) and 3,4-dihydro-3,4-dihydroxyphthalate 3,4-dehydrogenase (PH), prepared by solubilization of the membrane fraction, 3,4-dihydroxyphthalate was selectively obtained from phthalata. Fe2+ and Mn2+ stimulated the formation of 3,4-dihydroxyphthalate by the membrane-bound PO and PH system. Received: 27 April 1994/Received last revision: 19 August 1994/Accepted: 12 September 1994  相似文献   

6.
Mannitol metabolism in fungi is thought to occur through a mannitol cycle first described in 1978. In this cycle, mannitol 1-phosphate 5-dehydrogenase (EC 1.1.1.17) was proposed to reduce fructose 6-phosphate into mannitol 1-phosphate, followed by dephosphorylation by a mannitol 1-phosphatase (EC 3.1.3.22) resulting in inorganic phosphate and mannitol. Mannitol would be converted back to fructose by the enzyme mannitol dehydrogenase (EC 1.1.1.138). Although mannitol 1-phosphate 5-dehydrogenase was proposed as the major biosynthetic enzyme and mannitol dehydrogenase as a degradative enzyme, both enzymes catalyze their respective reverse reactions. To date the cycle has not been confirmed through genetic analysis. We conducted enzyme assays that confirmed the presence of these enzymes in a tobacco isolate of Alternaria alternata. Using a degenerate primer strategy, we isolated the genes encoding the enzymes and used targeted gene disruption to create mutants deficient in mannitol 1-phosphate 5-dehydrogenase, mannitol dehydrogenase, or both. PCR analysis confirmed gene disruption in the mutants, and enzyme assays demonstrated a lack of enzymatic activity for each enzyme. GC-MS experiments showed that a mutant deficient in both enzymes did not produce mannitol. Mutants deficient in mannitol 1-phosphate 5-dehydrogenase or mannitol dehydrogenase alone produced 11.5 and 65.7 %, respectively, of wild type levels. All mutants grew on mannitol as a sole carbon source, however, the double mutant and mutant deficient in mannitol 1-phosphate 5-dehydrogenase grew poorly. Our data demonstrate that mannitol 1-phosphate 5-dehydrogenase and mannitol dehydrogenase are essential enzymes in mannitol metabolism in A. alternata, but do not support mannitol metabolism operating as a cycle.  相似文献   

7.
To identify the enzyme responsible for pentitol oxidation by acetic acid bacteria, two different ribitol oxidizing enzymes, one in the cytosolic fraction of NAD(P)-dependent and the other in the membrane fraction of NAD(P)-independent enzymes, were examined with respect to oxidative fermentation. The cytoplasmic NAD-dependent ribitol dehydrogenase (EC 1.1.1.56) was crystallized from Gluconobacter suboxydans IFO 12528 and found to be an enzyme having 100 kDa of molecular mass and 5 s as the sedimentation constant, composed of four identical subunits of 25 kDa. The enzyme catalyzed a shuttle reversible oxidoreduction between ribitol and D-ribulose in the presence of NAD and NADH, respectively. Xylitol and L-arabitol were well oxidized by the enzyme with reaction rates comparable to ribitol oxidation. D-Ribulose, L-ribulose, and L-xylulose were well reduced by the enzyme in the presence of NADH as cosubstrates. The optimum pH of pentitol oxidation was found at alkaline pH such as 9.5-10.5 and ketopentose reduction was found at pH 6.0. NAD-Dependent ribitol dehydrogenase seemed to be specific to oxidoreduction between pentitols and ketopentoses and D-sorbitol and D-mannitol were not oxidized by this enzyme. However, no D-ribulose accumulation was observed outside the cells during the growth of the organism on ribitol. L-Ribulose was accumulated in the culture medium instead, as the direct oxidation product catalyzed by a membrane-bound NAD(P)-independent ribitol dehydrogenase. Thus, the physiological role of NAD-dependent ribitol dehydrogenase was accounted to catalyze ribitol oxidation to D-ribulose in cytoplasm, taking D-ribulose to the pentose phosphate pathway after being phosphorylated. L-Ribulose outside the cells would be incorporated into the cytoplasm in several ways when need for carbon and energy sources made it necessary to use L-ribulose for their survival. From a series of simple experiments, membrane-bound sugar alcohol dehydrogenase was concluded to be the enzyme responsible for L-ribulose production in oxidative fermentation by acetic acid bacteria.  相似文献   

8.
Flavobacterium saccharophilum cytoplasmic membranes contain several cytochromes linked to the respiratory chain. The presence of c-type cytochrome, cytochrome o, and a small amount of a-type cytochrome was proved. Cytochrome c551 was purified to electrophoretic homogeneity by ion-exchange chromatography and gel filtration from a membrane fraction of F. saccharophilum and its properties determined. Cytochrome c551 possessed absorption peaks at 407 nm in the oxidized form, and at 415, 521, 551 nm in the reduced form. The cytochrome c551 had a molecular weight of 15,500 as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Glucoside 3-dehydrogenase of F. saccharophilum reduced the cytochrome c551 with methyl-alpha-D-glucoside, D-glucose, sucrose, or validoxylamine A. When the purified glucoside 3-dehydrogenase was incubated with methyl-alpha-D-glucoside and purified ferricytochrome c551, methyl-alpha-D-3-ketoglucoside was formed as indicated by GC-MS analysis. The addition of a substrate to the membrane fraction caused an increase in the rate of oxygen uptake and an abrupt reduction in cytochrome c551. The electron transfer in the 3-keto sugar forming system may be as follows: sugars----glucoside 3-dehydrogenase----cytochrome c551----cytochrome oxidase----O2. Thus, the electron acceptor of glucoside 3-dehydrogenase is possibly connected to the membrane-bound cytochrome system.  相似文献   

9.
Microbacterium luteolum YK-1 has pyridoxine degradation pathway I. We have cloned the structural gene for the second step enzyme, pyridoxal 4-dehydrogenase. The gene consists of 1,026-bp nucleotides and encodes 342 amino acids. The enzyme was overexpressed under cold shock conditions with a coexpression system and chaperonin GroEL/ES. The recombinant enzyme showed the same properties as the M. luteolum enzyme. The primary sequence of the enzyme was 54% identical with that of d-threo-aldose 1-dehydrogenase from Agrobacterium tumefaciens, a probable aldo-keto reductase (AKR). Upon multiple alignment with enzymes belonging to the 14 AKR families so far reported, pyridoxal 4-dehydrogenase was found to form a new AKR superfamily (AKR15) together with A. tumefaciens d-threo-aldose 1-dehydrogenase and Pseudomonas sp. l-fucose dehydrogenase. These enzymes belong to a distinct branch from the two main ones found in the phylogenic tree of AKR proteins. The enzymes on the new branch are characterized by their inability to reduce the corresponding lactones, which are produced from pyridoxal or sugars. Furthermore, pyridoxal 4-dehydrogenase prefers NAD(+) to NADP(+) as a cofactor, although AKRs generally show higher affinities for the latter.  相似文献   

10.
A. SUEMORI, K. NAKAJIMA, R. KURANE AND Y. NAKAMURA. 1996. Rhodococcus erythropolis strain S1 formed enzymes essential to the degradation of phthalate when grown in phthalate-minimal medium. The reaction responsible for the dihydroxylation of the phthalate-benzene ring was concluded to be catalysed by membrane-associated phthalate 3,4-dioxygenase (PO). Of the other enzymes involved, 3,4-dihydro-3,4-dihydroxyphthalate 3,4-dehydrogenase (PH) and 3,4-dihydroxyphthalate 2-decarboxylase (PC) appeared likely to be membrane-bound, while protocatechuate 3,4-dioxygenase appeared to be present in the cytoplasm. Based on the data, the membrane-bound PO and PH apparently form an enzyme complex, which is associated with the NADH-regenerating system.  相似文献   

11.
Occurrence in Brain Lysosomes of a Sialidase Active on Ganglioside   总被引:3,自引:3,他引:0  
A lysosomal preparation, obtained from brain homogenate of 17-day-old C57BL mice by centrifugation on a self-generating Percoll linear density gradient, showed relative specific activity (RSA) values for typical lysosomal enzymes of 40-120 and for mitochondria, plasma membrane, and cytosol markers of much lower than 1, a result indicating a high degree of homogeneity. The lysosomal preparation contained a sialidase activity that was assayed radiometrically with ganglioside [3H]GD1a and fluorimetrically with 4-methylumbelliferyl-1-alpha-D-N-acetylneuraminic acid (MUB-NeuAc). The properties of the lysosomal enzyme were compared with those of the plasma membrane-bound sialidase contained in a purified synaptosomal plasma membrane fraction that was prepared from the same homogenate and assayed with the same substrates. The optimal pH was 4.2 for the lysosomal and 5.1 for the plasma membrane-bound enzyme. The apparent Km values for GD1a and MUB-NeuAc were 1.5 X 10(-5) and 4.2 X 10(-5) M, respectively, for the lysosomal enzyme and 2.7 X 10(-4) and 6.3 X 10(-5) M for the plasma membrane-bound one. Triton X-100 had a predominantly inhibitory effect on the lysosomal enzyme, whereas it strongly activated the plasma membrane-bound one. The lysosomal enzyme was highly unstable on storage and freezing and thawing cycles, whereas the plasma membrane-bound one was substantially stable. The RSA value of the lysosomal sialidase in the lysosomal fraction closely resembled that of authentic lysosomal enzymes, whereas the RSA value of plasma membrane-bound sialidase in the plasma membrane fraction was very similar to that of typical plasma membrane markers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A membrane-bound glucoside 3-dehydrogenase [EC 1.1.99.13], which oxidizes validoxylamine A to the 3-keto derivative, was solubilized from the membrane fraction of Flavobacterium saccharophilum by Triton X-100 and purified about 280-fold with an overall yield of 30% from the membrane fraction by column chromatography on DEAE- and CM-Sepharose CL-6B and gel filtration on Sephacryl S-300. The purified enzyme exhibited a single protein band on disc gel electrophoresis, and FAD was shown to be the prosthetic group. The enzyme had a molecular weight of 270,000 as determined by gel filtration on Sephacryl S-300 and consisted of 4 identical subunits each with a molecular weight of 66,000. The enzyme reacted with various artificial electron acceptors such as 2,6-dichlorophenolindophenol (DCIP), phenazine methosulfate, and ferricyanide. The optimum pH for DCIP reductase activity was 6.0. The enzyme was inhibited by Hg2+ and p-chloromercuribenzoate. D-Glucose and methyl-alpha- and beta-D-glucoside showed the highest susceptibility to the enzyme, and were converted to the corresponding 3-keto sugars.  相似文献   

13.
Glucose-1-Phosphate-Negative Mutant of Agrobacterium tumefaciens   总被引:1,自引:1,他引:0       下载免费PDF全文
Glucose-1-phosphate-negative mutants that are unable to grow in a synthetic medium containing glucose-1-phosphate (G-1-P) as a sole carbon source were isolated by treatment of Agrobacterium tumefaciens IAM 1525 with N-methyl-N'-nitro-N-nitrosoguanidine. All of the enzymes involved in G-1-P metabolism (glucoside-3-dehydrogenase, 3-ketoglucose-1-phosphate-degrading enzyme, alpha-glucosidase, and phosphatases) were detected in the sonic extract prepared from resting cells of one of the mutants, strain M-24, in approximately equal levels to those in the parent strain. Resting cells of the mutant oxidized G-1-P to 3-ketoglucose-1-phosphate (3KG-1-P), the first product in G-1-P metabolism by the bacterium, with little subsequent degradation, whereas the parent showed further degradation of G-1-P via 3KG-1-P. Glucoside-3-dehydrogenase catalyzing 3-ketoglucoside formation was readily released from cells by osmotic shock, whereas the 3KG-1-P-degrading enzyme was not released. Thus, the former and the latter enzymes might be at different intracellular loci, such as periplasm and cytoplasm, respectively. It is suggested that the mutant strain M-24 is a G-1-P-negative mutant deficient in a 3KG-1-P transport system located on the cytoplasmic membrane.  相似文献   

14.
A sensitive and quantitative assay for 3-octaprenyl-4-hydroxybenzoate carboxy-lyase has been developed. This enzyme, which catalyses the third reaction in ubiquinone biosynthesis in Escherichia coli, was partially purified and some of its properties determined. It was found that a considerable proportion of the carboxylyase activity could be separated from the membrane fraction in cell extracts prepared using a French press. Gel filtration showed the molecular weight of the enzyme to be about 340 000. For optimal activity the carboxy-lyase was shown to require Mn2+, washed membranes or an extract of phospholipids, and an unidentified heat stable factor of molecular weight less than 10 000. The carboxy-lyase reaction was also shown to be strongly stimulated by dithiothreitol and methanol. The properties of the carboxy-lyase are compared with the three other enzymes concerned with ubiquinone biosynthesis in E. coli which have been studied in vitro. The fact that the substrate of the carboxy-lyase is membrane-bound and the enzyme is stimulated by phospholipid suggests that it normally functions in association with the cytoplasmic membrane in vivo.  相似文献   

15.
16.
Pathways for metabolism of ketoaldonic acids in an Erwinia sp.   总被引:1,自引:0,他引:1       下载免费PDF全文
The pathways involved in the metabolism of ketoaldonic acids by Erwinia sp. strain ATCC 39140 have been investigated by use of a combination of enzyme assays and isolation of bacterial mutants. The catabolism of 2,5-diketo-D-gluconate (2,5-DKG) to gluconate can proceed by two separate NAD(P)H-dependent pathways. The first pathway involves the direct reduction of 2,5-DKG to 5-keto-D-gluconate, which is then reduced to gluconate. The second pathway involves the consecutive reduction of 2,5-DKG to 2-keto-L-gulonate and L-idonic acid, which is then oxidized to 5-keto-D-gluconate, which is then reduced to gluconate. Gluconate, which can also be produced by the NAD(P)H-dependent reduction of 2-keto-D-gluconate, is phosphorylated to 6-phosphogluconate and further metabolized through the pentose phosphate pathway. No evidence was found for the existence of the Entner-Doudoroff pathway in this strain.  相似文献   

17.
Cell lysates of mouse peritoneal macrophages, in the presence of reduced glutathione, converted leukotriene LTA4 to LTC4, and neither LTD4 nor LTE4 was detected. Therefore, like cultured rat basophilic leukemia cells (RBL cells), the peritoneal macrophage contains LTC4 synthetase and appears to contain little, if any, gamma-glutamyl transpeptidase. When LTA4 was added to subcellular fractions of mouse macrophage lysate, the highest specific activity of LTC4 synthetase (nmol LTC4/mg protein per 10 min) was associated with the particulate or membrane fractions (i.e., 10(4) and 10(5) X g pellets). The 10(5) X g supernatant contains approx. 1% of the specific activity and 6% of the total LTC4 synthetase activity compared with that of the 10(5) X g pellet. Conversely, the 10(5) X g supernatant had four-times more specific activity and 19-times more total GSH S-transferase activity than did the 10(5) X g pellet when evaluated using 1-chloro-2,4-dinitrobenzene (DNCB) as the substrate. LTA4 was converted to LTC4 by the membrane enzyme LTC4 synthetase in a dose-dependent manner at low LTA4 concentrations (3-50 microM) and reached a plateau of approx. 30 microM LTA4 using the macrophage 10(5) X g pellet as an enzyme source. The apparent Km value of LTC4 synthetase for LTA4 was estimated to be 5 microM based on Lineweaver-Burk plots. Enzyme in the 10(5) X g supernatant produced negligible quantities of LTC4 (1% or less of the particulate fractions) over a wide range of LTA4 concentrations. However, an enzyme in the 10(5) X g supernatant fraction presumed to be GSH S-transferase effectively catalyzes the conjugation of glutathione (GSH) with the aromatic compound DNCB. The apparent Km value of GSH S-transferase for DNCB was estimated to be 1.0-1.5 mM. On the other hand, enzyme from the membrane fraction (i.e., 10(5) X g pellet) catalyzed this reaction at a negligible rate over a wide range of DNCB concentrations. The apparent Km value of LTC4 synthetase for GSH was estimated to be 0.36 mM and the corresponding Km value estimated for the glutathione S-transferase was 0.25-0.76 mM. These values indicate similar kinetics for GSH utilization by both enzymes. These Km values are also significantly lower than the intracellular GSH levels of 2 to 5 mM. Therefore, it is suggested that the substrate limiting LTC4 synthetase activity is LTA4 and not GSH. Our results indicate that LTC4 synthetase from mouse peritoneal macrophages is a particulate or membrane-bound enzyme, as was reported by Bach et al.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
3-Ketosteroid-delta 1-dehydrogenase from Nocardia corallina is a flavoenzyme that catalyzes 1,2-desaturation of 3-ketosteroid. The dehydrogenase generated complexes with 3-ketosteroids and phenolic steroids such as estradiol with remarkable perturbations of the visible spectrum. The enzyme did not make the adduct with sulfite ion, but could use molecular oxygen as the electron acceptor. The CD spectra of oxidized and steroid-bound enzymes exhibited positive dichroisms in the visible region which resembled those of flavoenzyme oxidases. The dehydrogenase led isosbestically to the stable red semiquinone species with large yields upon photochemical or dithionite reduction (at pH 7.4) in the presence of the steroid product, 1,4-androstadiene-3,17-dione, but in the absence of the steroid the yield of semiquinone was low and the fully reduced enzyme was obtained. Substrate titration also yielded the red flavo-semiquinone stoichiometrically and it was hard to generate the fully reduced form. The reduced enzyme was oxidized with molecular oxygen, but did not oxidize with ferricyanide. An EPR study of these half-reduced forms confirmed the presence of the radical species with the g = 2.004 signal. The dehydrogenase was rapidly reduced with an excess amount of 3-ketosteroid at about 80% yield at pH 7.4 under anaerobic conditions and the reduced species was altered to the stable red semiquinone species. The rate of this reaction was t1/2 = 28 min at pH 7.4, 130 min at pH 9.0 and 34 min at pH 6.4, respectively. These results indicate that the semiquinone species does not act directly in turnover of the dehydrogenase reaction. The results were compared with the spectral properties of general acyl-CoA dehydrogenases and acyl-CoA oxidase toward the mechanism of C1,2-dehydrogenation.  相似文献   

19.
I Wada  S Eto  M Himeno  K Kato 《Journal of biochemistry》1987,101(5):1077-1085
5'-Nucleotidase was found in purified rat liver tritosomes. When tritosomes were subfractionated into the membrane and soluble contents fractions, 73% of the total 5'-nucleotidase activity was found in the membrane fraction and 24% in the soluble contents fraction. Immunoblotting using specific polyclonal antibodies against the rat liver plasma membrane 5'-nucleotidase showed that the mobilities on SDS-polyacrylamide gel electrophoresis of both 5'-nucleotidases in the membrane and contents fractions were identical to that of the enzyme in the plasma membranes (Mr = 72,000). 5'-Nucleotidases in the membrane and contents fractions were sensitive to neuraminidase and converted into a form that was 4 kDa smaller after digestion, as observed in the case of plasma membrane enzyme. 5'-Nucleotidases, both from the membrane and contents fractions, were purified using immunoaffinity chromatography, and the isoelectric points, heat stability, and oligomeric structure of the purified enzymes were compared. Isoelectric focusing and the heat stability test indicated the resemblance of the soluble enzyme to the membrane-bound enzyme. However, the membrane-bound enzyme aggregated in the absence of Triton X-100, whereas the soluble enzyme behaved as a dimer. The topography of 5'-nucleotidase in the tritosomal membranes was studied using antibodies against 5'-nucleotidase and neuraminidase treatment. The inhibition of 5'-nucleotidase were not observed in the intact tritosomal fraction until the tritosomes had been disrupted by osmotic shock. These results show that the active sites and the oligosaccharide chains of 5'-nucleotidase are located on the inside surface of the tritosomal membranes.  相似文献   

20.
The inducible 3-ketosteroid-delta 1-dehydrogenase of Nocardia corallina which catalyzes the introduction of a double bond into the position of carbon 1 and 2 of ring A of 3-ketosteroid has been obtained in four steps with a 50% yield and 360-fold purification. The enzyme is homogeneous as judged by SDS-gel electrophoresis and is a monomeric protein with a molecular weight of 60,500. The isoelectric point of the enzyme is about 3.1. The enzyme contains 1 mol of flavin adenine dinucleotide per mol of protein, and has a typical flavoprotein absorption spectrum with maxima of 458, 362 and 268 nm. The enzyme is very stable in the absence of added cofactors, and catalyzes the dehydrogenation of delta 4-3-ketosteroids in the presence of phenazine methosulfate, which acts as an excellent electron acceptor. Potassium ferricyanide and cytochrome c did not act as electron acceptors. The delta 1-dehydrogenation was also stimulated by molecular oxygen with stoichiometric production of hydrogen peroxide and delta 1,4-3-ketosteroid. The optimum pH is 10 for dehydrogenation using phenazine methosulfate, and is between 8.5 and 10 for the oxidase reaction. The enzyme oxidizes a wide variety of 3-ketosteroids, but not 3 beta-hydroxysteroids. 3-Ketosteroids having an 11 alpha- or 11 beta-hydroxyl group were oxidized at slow rates. The purified enzyme catalyzes efficiently aromatization of the A-ring of 19-nortestosterone and 19-norandrostenedione to produce estradiol and estrone. 19-Hydroxytestosterone, 19-hydroxyandrostenedion and 19-oxotestosterone were converted to the respective phenolic steroids with cleavage of the C10 side-chain. Activities of 3-ketosteroid-delta 4-dehydrogenase, delta 5-3-ketosteroid-4,5-isomerase, 3 beta-hydroxysteroid dehydrogenase and 17 beta-hydroxysteroid dehydrogenase were not observed in the purified preparations. Properties of this novel flavoprotein enzyme are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号