首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Shan L  Fan Y  Li H  Liu W  Gu H  Zhou F  Yuan Z 《Journal of Proteomics》2012,75(4):1181-1189
Congenital spina bifida aperta is a common congenital malformation in children and has an incidence of 1‰ to 5‰ in China. However, we currently lack specific biomarkers for screening or prenatal diagnosis and there is no method to entirely cure or prevent such defects. In this study, we used two-dimensional gel electrophoresis (2-DE)/mass spectrometry (MS) to characterize differentially expressed proteins in amniotic-fluid samples (AFSs) of embryonic day (E) 17.5 rat fetuses with spina bifida aperta induced by retinoic acid (RA). We identified five proteins differentially expressed in AFSs of spina bifida aperta, including three upregulated proteins (transferrin, alpha-1 antiproteinase and signal recognition particle receptor, B subunit [SRPRB] 55 kDa), two downregulated proteins (apolipoprotein A IV [APO A4] and Srprb 77 kDa). Specifically, we found 11 alpha-1 fetoprotein (AFP) fragments that were downregulated and 35 AFP fragments that were upregulated in AFSs from embryos with spina bifida aperta. Of the downregulated AFP fragments, 72.7% (8/11) were confined to the AFP N-terminus (amino acids [aas] 25-440) and 77.1% (27/35) of upregulated AFP fragments were confined to the AFP C-terminus (aas 340-596). We also confirmed APO A4 and AFP by immunoblot analysis. This is the first comparative proteomic study of AFSs from rat fetuses with spina bifida aperta. We demonstrate proteomic alterations in the AFS of spina bifida aperta, which may provide new insights in neural tube defects and contribute to the prenatal screening.  相似文献   

2.
3.

Background

A large number of studies have confirmed that excessive apoptosis is one of the reasons for deficient neuronal function in neural tube defects (NTDs). A previous study from our laboratory used 2-D gel electrophoresis to demonstrate that 14-3-3ζ expression was low in the spinal cords of rat fetuses with spina bifida aperta at embryonic day (E) 17. As a member of the 14-3-3 protein family, 14-3-3ζ plays a crucial role in the determination of cell fate and anti-apoptotic activity. However, neither the expression of 14-3-3ζ in defective spinal cords, nor the correlation between 14-3-3ζ and excessive apoptosis in NTDs has been fully confirmed.

Methodology/Principal Findings

We used immunoblotting and quantitative real-time PCR (qRT-PCR) to quantify the expression of 14-3-3ζ and double immunofluorescence to visualize 14-3-3ζ and apoptosis. We found that, compared with controls, 14-3-3ζ was down-regulated in spina bifida between E12 and E15. Excessive apoptotic cells and low expression of 14-3-3ζ were observed in the dorsal region of spinal cords with spina bifida during the same time period. To initially explore the molecular mechanisms of apoptosis in NTDs, we investigated the expression of microRNA-7 (miR-7), microRNA-375 (miR-375) and microRNA-451 (miR-451), which are known to down-regulate 14-3-3ζ in several different cell types. We also investigated the expression of p53, a molecule that is downstream of 14-3-3ζ and can be down-regulated by it. We discovered that, in contrast to the reduction of 14-3-3ζ expression, the expression of miR-451, miR-375 and p53 increased in spina bifida rat fetuses.

Conclusions/Significance

These data suggest that the reduced expression of 14-3-3ζ plays a role in the excessive apoptosis that occurs in spina bifida and may be partly regulated by the over-expression of miR-451 and miR-375, and the consequent up-regulation of p53 might further promote apoptosis in spina bifida.  相似文献   

4.
5.
K Ehlers  H Stürje  H J Merker  H Nau 《Teratology》1992,46(2):117-130
The antiepileptic drug valproic acid (VPA) has been implicated as a human teratogen causing spina bifida aperta. Recently, we developed a mouse model inducing spina bifida aperta with VPA. To elucidate the pathogenesis of VPA-induced spina bifida aperta we now investigated the anatomy and histology of this defect in the mouse. The morphology of spina bifida aperta induced by all-trans-retinoic acid (RA) was used for comparison. Various doses of VPA and RA were administered at different times to determine the periods of sensitivity for inducing spina bifida aperta with these drugs. Each administration regimen consisted of three doses applied at intervals of 6 hr. RA induced spina bifida aperta during an earlier developmental period (day 8 of gestation) than VPA (day 9 of gestation). The most effective regimens for induction of spina bifida aperta in mice were injections of 3 x 500 mg VPA-Na/kg body weight (b.w.) intraperitoneally on day 9 of gestation at 0, 6, and 12 hr; RA (12.5 mg/kg b.w.) was given orally on day 8 of gestation at 12 and 18 hr, day 9 at 0 hr. VPA did not induce spina bifida aperta on day 8 of gestation and RA did not induce this effect on day 9 of gestation. Histological studies of day 18 fetuses carrying spina bifida aperta were performed. The spina bifida aperta induced by VPA shows a disorganized and necrotic spinal cord. In the vertebral canal were observed cell debris, blood cells, capillaries, macrophages, and rests of meninges. These results indicate that the spinal cord is almost destroyed at the affected section. In contrast, the spina bifida aperta induced by RA demonstrates a spinal cord organized in the gray and white matter, the dorsal and ventral horn. But the neural canal does not exist, only a layer of ependymal cells lies on the surface of the spinal cord. Our results indicate that the morphology of spina bifida aperta induced by VPA differed distinctly from that induced by RA in the mouse fetus. Moreover VPA produced a spina bifida aperta with a specific morphology. Also the period of sensitivity for induction of this lesion differed and occurred earlier for RA than for VPA. VPA and RA may possibly induce spina bifida aperta via different mechanisms in the mouse.  相似文献   

6.
We review the data from studies of mouse mutants that lend insight to the mechanisms that lead to neural tube defects (NTDs). Most of the 50 single-gene mutations that cause neural tube defects (NTDs) in mice also cause severe embryonic-lethal syndromes, in which exencephaly is a nonspecific feature. In a few mutants (e.g., Trp53, Macs, Mlp or Sp), other defects may be present, but affected fetuses can survive to birth. Multifactorial genetic causes, as are present in the curly tail stock (15-20% spina bifida), or the SELH/Bc strain (15-20% exencephaly), lead to nonsyndromic NTDs. The mutations indicate that "spina bifida occulta," a dorsal gap in the vertebral arches over an intact neural tube, is usually genetically and developmentally unrelated to exencephaly or "spina bifida" (aperta). Almost all exencephaly or spina bifida aperta of genetic origin is caused by failure of neural fold elevation. The developmental mechanisms in genetic NTDs are considered in terms of distinct rostro-caudal zones along the neural folds that likely differ in mechanism of elevation. Failure of elevation leads to: split face (zone A), exencephaly (zone B), rachischisis (all of zone D), or spina bifida (caudal zone D). The developmental mechanisms leading to these genetic NTDs are heterogeneous, even within one zone. At the tissue level, the mutants show that the mechanism of failure of elevation can involve, e.g., (1) slow growth of adjacent tethered tissue (curly tail), (2) defective forebrain mesenchyme (Cart1 or twist), (3) defective basal lamina in surface ectoderm (Lama5), (4) excessive breadth of floorplate and notochord (Lp), (5) abnormal neuroepithelium (Apob, Sp, Tcfap2a), (6) morphological deformation of neural folds (jmj), (7) abnormal neuroepithelial and neural crest cell gap-junction communication (Gja1), or (8) incomplete compensation for a defective step in the elevation sequence (SELH/Bc). At the biochemical level, mutants suggest involvement of: (1) faulty regulation of apoptosis (Trp53 or p300), (2) premature differentiation (Hes1), (3) disruption of actin function (Macs or Mlp), (4) abnormal telomerase complex (Terc), or (5) faulty pyrimidine synthesis (Sp). The NTD preventative effect of maternal dietary supplementation is also heterogeneous, as demonstrated by: (1) methionine (Axd), (2) folic acid or thymidine (Sp), or (3) inositol (curly tail). The heterogeneity of mechanism of mouse NTDs suggests that human NTDs, including the common nonsyndromic anencephaly or spina bifida, may also reflect a variety of genetically caused defects in developmental mechanisms normally responsible for elevation of the neural folds.  相似文献   

7.
关于维甲酸胚胎病理学的研究很多,维甲酸受体在器官发生、发育及神经管闭合过程中发挥重要作用。但维甲酸影响这些过程的机制还不清楚。在本研究中,我们发现,小鼠怀孕8天时,给予母体连续3次维甲酸灌胃,将导致胎儿脊柱裂,发生率为96.77%。本研究应用微阵列技术,在维甲酸诱导的脊柱裂小鼠胎儿的脊髓组织中发现了134个差异表达在1.5倍以上的基因。基因富集分析显示,母亲暴露于维甲酸导致的胎儿脊柱裂,与促凋亡和抗凋亡、细胞增殖、迁徙、细胞骨架成分以及细胞或局部粘附等基因功能簇相关,提示这些细胞成分和生物学的功能缺陷促使脊柱发育异常。我们的研究提供了脊柱裂的全基因组基因表达模式,有助于理解神经管缺陷的病因和病理学。  相似文献   

8.
Many mouse models exist for neural tube defects (NTDs), but only few of them are relevant for human patients that are born alive with spina bifida aperta. NTDs in humans show a complex inheritance, which most likely result from the involvement of a variety of predisposing genetic and environmental factors. Hints toward the identity of predisposing genetic factors for human NTDs could come from mouse studies on the development of the neural tube and spinal cord, as well as from studies on associated features of this type of diseases. Among such features is the observation that pregnancies affected by a neural tube defect frequently show changes in thymus morphology, and in both neonatal and maternal T-cell repertoire. The genes for E2a and Pax1 have both been implicated in not only paraxial mesodermal development, but also in that of the immune system. Moreover, Pax1 mutant mice have been shown to display NTDs in digenic mouse models. In the present study we have investigated the phenotype of E2a null mutant mice that are also heterozygous for the so-called undulated mutation in Pax1. Here we report that such double-mutant mice develop a non-lethal NTD that strongly resembles the classic human NTD: spina bifida aperta, associated with defects of the axial skeleton, immune system and urinary tract.  相似文献   

9.
BACKGROUND: The number of mouse mutants and strains with neural tube closure defects (NTDs) now exceeds 190, including 155 involving known genes, 33 with unidentified genes, and eight "multifactorial" strains. METHODS: The emerging patterns of mouse NTDs are considered in relation to the unknown genetics of the common human NTDs, anencephaly, and spina bifida aperta. RESULTS: Of the 150 mouse mutants that survive past midgestation, 20% have risk of either exencephaly and spina bifida aperta or both, parallel to the majority of human NTDs, whereas 70% have only exencephaly, 5% have only spina bifida, and 5% have craniorachischisis. The primary defect in most mouse NTDs is failure of neural fold elevation. Most null mutations (>90%) produce syndromes of multiple affected structures with high penetrance in homozygotes, whereas the "multifactorial" strains and several null-mutant heterozygotes and mutants with partial gene function (hypomorphs) have low-penetrance nonsyndromic NTDs, like the majority of human NTDs. The normal functions of the mutated genes are diverse, with clusters in pathways of actin function, apoptosis, and chromatin methylation and structure. The female excess observed in human anencephaly is found in all mouse exencephaly mutants for which gender has been studied. Maternal agents, including folate, methionine, inositol, or alternative commercial diets, have specific preventative effects in eight mutants and strains. CONCLUSIONS: If the human homologs of the mouse NTD mutants contribute to risk of common human NTDs, it seems likely to be in multifactorial combinations of hypomorphs and low-penetrance heterozygotes, as exemplified by mouse digenic mutants and the oligogenic SELH/Bc strain.  相似文献   

10.
This investigation was performed to demonstrate the morphologic basis of the elevation of fetal proteins in the amniotic fluid of fetuses with neural tube defects. Pregnant rats were treated with hypervitaminosis. A to induce exencephaly or with trypan blue to produce spina bifida aperta. The malformations were studied on days 15-20. On day 15 of gestation, edema developed in the primitive nervous tissue. This was followed by the appearance of quickly expanding hemorrhages throughout the ventricular and intermediate zones. Some capillaries did not rupture but collapsed and showed degenerative changes of the endothelium, probably due to lack of blood perfusion. The ventricular layer in exencephaly and spina bifida aperta was exposed to the amniotic cavity due to non closure of the neural tube. On day 17, this superficial lining of the primitive nervous tissue was disrupted by the expanding hemorrhages and subsequent necrosis. As a result vast amounts of fetal blood and cell debris were extruded into the amniotic fluid. During days 18 to 20, the degeneration of the nervous tissue proceeded rapidly. This process showed the same features in the ventricular cells, the primitive neurons and the neurons. Initially it was characterized by condensation of the nuclear chromatin and the cytoplasm, irregular outlines and breakdown of the plasma membrane. Only part of the cell debris was phagocytozed by macrophages. It is concluded that the leakage of fetal serum and cell debris causes the elevation of fetal protein levels in the amniotic fluid of fetuses with open neural tube defects.  相似文献   

11.
Valproic acid-induced spina bifida: a mouse model.   总被引:9,自引:0,他引:9  
K Ehlers  H Stürje  H J Merker  H Nau 《Teratology》1992,45(2):145-154
Prenatal exposure to the antiepileptic drug valproic acid (VPA) has been associated with the formation of spina bifida aperta, meningocele, and meningomyelocele in the human. Until now, a direct relationship between VPA application and spina bifida has not been experimentally demonstrated. VPA was known only to induce exencephaly in mice, a defect of the anterior neural tube. Maximal sensitivity toward production of this defect was on day 8 of gestation (plug day = day 0). The closure of the posterior neuropore occurs later in the development of mice than the closure of the anterior neuropore. To investigate whether there is a direct relationship between VPA application during pregnancy and induction of spina bifida in mice, we administered various doses of the drug on day 9 of gestation, at three time intervals (at 0, 6, and 12 hr). This administration of VPA produced spina bifida aperta and spina bifida occulta in mice. High doses of VPA (3 x 450 and 3 x 500 mg/kg) induced a low rate of spina bifida aperta in the lumbosacral region. High incidences of spina bifida occulta, a less serious form of spina bifida, were induced with lower doses. This malformation was demonstrated in double-stained fetal skeletons by measurements of the distance between the cartilaginous ends of each vertebral arch. The occurrence of this defect and its localization was dose-dependent. The lumbar region was affected by all doses investigated (3 x 300, 3 x 350, 3 x 400, 3 x 450, and 3 x 500 mg/kg). The sacral/coccygeal region was affected additionally, but with higher doses (3 x 400, 3 x 450, and 3 x 500 mg/kg). A comparison of the results obtained with day 16 and 17 control fetuses showed that the pattern of gaps present in the lumbar and sacral region of the spinal cord in treated groups was drug-specific and not related to a developmental delay. Our results indicate that multiple administrations of VPA on day 9 of gestation in mice result in a low incidence of spina bifida aperta and a high incidence of spina bifida occulta, and provides a relevant model for the study of human spina bifida defects.  相似文献   

12.
We examined clinical, genetic, and epidemiologic factors among 512 probands with nonsyndromal neural tube defects (NTDs). Data were analyzed after grouping the probands in four different ways with respect to pathological features and putative pathogenic mechanisms. Apparently unrelated congenital anomalies occurred more frequently among probands with craniorachischisis (62%), encephalocele (30%), or multiple NTDs (25%) than among probands with anencephaly (14.7%) or spina bifida (10.1%) (P much less than .0001). Unrelated congenital anomalies occurred less often among probands with low spina bifida (6.7%) than among probands with high spina bifida (19.5%). NTDs were seen in 7.8% of the siblings of probands with high spina bifida but in only 0.7% of the siblings of probands with low spina bifida, in 2.2% of the siblings of anencephalic probands, and in none of the siblings of probands with craniorachischisis, encephalocele, or multiple NTDS (P less than .001). In all 16 families in which two siblings had NTDs, both had either defects of the type associated with abnormal primary neurulation or defects of the type associated with abnormal canalization. High spina bifida and multiple NTDs were found more frequently than expected among the Sikh probands (P less than .02). The frequency of non-NTD congenital anomalies was higher among siblings of Sikh probands (8.8%) than among siblings of other probands (2.4%) (P less than .05). This excess was due to the occurrence of hydrocephalus without spina bifida in four of 68 siblings of Sikh probands.  相似文献   

13.
Spina bifida, or failure of the vertebrae to close at the midline, is a common congenital malformation in humans that is often synonymous with neural tube defects (NTDs). However, it is likely that other etiologies exist. Genetic disruption of platelet-derived growth factor receptor (PDGFR) alpha results in spina bifida, but the underlying mechanism has not been identified. To elucidate the cause of this birth defect in PDGFRalpha mutant embryos, we examined the developmental processes involved in vertebrae formation. Exposure of chick embryos to the PDGFR inhibitor imatinib mesylate resulted in spina bifida in the absence of NTDs. We next examined embryos with a tissue-specific deletion of the receptor. We found that loss of the receptor from chondrocytes did not recapitulate the spina bifida phenotype. By contrast, loss of the receptor from all sclerotome and dermatome derivatives or disruption of PDGFRalpha-driven phosphatidyl-inositol 3' kinase (PI3K) activity resulted in spina bifida. Furthermore, we identified a migration defect in the sclerotome as the cause of the abnormal vertebral development. We found that primary cells from these mice exhibited defects in PAK1 activation and paxillin localization. Taken together, these results indicate that PDGFRalpha downstream effectors, especially PI3K, are essential for cell migration of a somite-derived dorsal mesenchyme and disruption of receptor signaling in these cells leads to spina bifida.  相似文献   

14.
15.
Spina bifida phenotypes in infants or fetuses of obese mothers   总被引:1,自引:0,他引:1  
BACKGROUND: A twofold or greater risk of neural tube defect (NTD)-affected pregnancy has been associated with prepregnant obesity, where obesity was defined as body mass index (BMI) of >29 kg/m(2). Risks have been more elevated for spina bifida than for anencephaly. METHODS: We investigated whether finer phenotypic classifications of spina bifida, in combination with other factors, were associated with a BMI of >29 kg/m(2). Data were derived from a case-control study of fetuses and infants with NTDs among 1989-1991 California births. Interviews were conducted with mothers of 277 spina bifida cases and 517 nonmalformed controls. RESULTS: Women with a BMI of >29 kg/m(2) compared with those 29 kg/m(2) compared with males whose mothers were 相似文献   

16.
BACKGROUND: PRKACA and PRKACB are genes encoding the cAMP-dependent protein kinase A (PKA) catalytic subunits alpha and beta, respectively. PKA is known to be involved in embryonic development, as it down-regulates the Hedgehog (Hh) signaling pathway, which is critical to normal pattern formation and morphogenesis. The PKA-deficient mouse model, which has only a single catalytic subunit, provided intriguing evidence demonstrating a relationship between decreased PKA activity and risk for posterior neural tube defects (NTDs) in the thoracic to sacral regions of gene-knockout mice. Unlike most other mutant mouse models of NTDs, the PKA-deficient mice develop spina bifida with 100% penetrance. We hypothesized that sequence variations in human genes encoding the catalytic subunits may alter the PKA activity and similarly increase the risk of spina bifida. METHODS: We sequenced the coding regions and the exon/intron boundaries of PRKACA and PRKACB. We also examined 3 common single-nucleotide polymorphisms (SNPs) of these 2 genes by allele discrimination. RESULTS: Five sequence variants in coding region and 2 intronic sequence variants proximal to exons were detected. None of the 3 SNPs examined in the association study appeared to be associated with substantially increased risk for spina bifida. CONCLUSIONS: Our results did not reveal a strong association between these PKA SNPs and spina bifida risk. Nonetheless, it is important to examine the possible gene-gene interactions between PRKACA and PRKACB when evaluating the risk for NTDs, as well as genes encoding regulatory subunits of PKA. In addition, interactions with other genes such as Sonic Hedgehog (SHH) should also be considered for future investigations.  相似文献   

17.
Retinoic acid-induced spina bifida: evidence for a pathogenetic mechanism   总被引:6,自引:0,他引:6  
Treatment of C57Bl/6J mice with three successive doses of all-trans retinoic acid (28 mg kg-1 body weight) on 8 day, 6 h (8d,6h), 8d,12h, and 8d,18h of gestation resulted in a high incidence (79%, 31/39 fetuses) of spina bifida with myeloschisis (spina bifida aperta) in near term fetuses. Twelve hours following the last maternal dose (9d,6h), the caudal aspects of treated embryos, were abnormal, with eversion of the neural plate at the posterior neuropore, as compared to its normal concavity in comparably staged control specimens. This eversion persisted in affected embryos through the time that the posterior neuropore should normally close. The distribution of cell death in control and experimental embryos was determined using vital staining with Nile blue sulphate and with routine histological techniques. Twelve hours following the maternal dosing regimen, experimental embryos showed evidence of excessive cell death, predominantly in the mesenchyme associated with the primitive streak and in the endoderm of the tail gut, both of which are readily identifiable sites of physiological cell death at this stage of development. In addition, the presumptive trunk neural crest cells located in the dorsal midline, cranial to the posterior neuropore, exhibited a marked amount of cell death in the experimental embryos. We propose that the major factor in the generation of spina bifida in this model is excessive cell death in the tail gut and mesenchyme ventral to the neuroepithelium of the posterior neuropore.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Birth defects in Arkansas: Is folic acid fortification making a difference?   总被引:2,自引:0,他引:2  
BACKGROUND: Since 1998, fortification of grain products with folic acid has been mandated in the United States, in an effort to reduce the prevalence of neural tube defects (NTDs). Published reports have shown a reduction in the prevalence of spina bifida since fortification was mandated, but no published studies have reported a reduction in birth defects, other than NTDs, that are postulated to be associated with folic acid deficiency. This study was performed to determine if fortification has reduced the prevalence of NTDs and other birth defects in Arkansas. METHODS: Using data from the Arkansas Reproductive Health Monitoring System, prevalences were computed for thirteen specific birth defects with prior evidence supporting a protective effect of folic acid or multivitamins. Prevalences were calculated using data for live births to Arkansas residents for 1993-2000. Exposure to folic acid fortification was classified by birth year as "pre-fortification" (1993-1995), "transition" (1996-1998) or "post-fortification" (1999-2000). Logistic regression analysis was used to compute crude and adjusted prevalence odds ratios comparing the identified time periods. RESULTS: Prevalences decreased between the pre- and post-fortification periods for spina bifida, orofacial clefts, limb reduction defects, omphalocele, and Down syndrome, but only the decrease in spina bifida was statistically significant (prevalence odds ratio 0.56; 95% confidence interval, 0.37, 0.83). CONCLUSION: In Arkansas, the prevalence of spina bifida has decreased since folic acid fortification of foods was implemented. Similar studies by other birth defects surveillance systems are needed to confirm a preventive effect of fortification for malformations other than spina bifida.  相似文献   

19.
Screening for novel PAX3 polymorphisms and risks of spina bifida   总被引:2,自引:0,他引:2  
BACKGROUND:PAX3 plays an important role in mammalian embryonic development. Known mutations in PAX3 are etiologically associated with Waardenburg syndrome and syndromic neural tube defects (NTDs). Mutations in the murine homologue, pax3, are responsible for the phenotype of splotch mice, in which nullizygotes are 100% penetrant for NTDs. METHODS: The study sample included 74 infants with spina bifida (cases) and 87 nonmalformed infant controls. The conserved paired-box domain as well as the upstream genomic region of PAX3 were subjected to resequencing and those identified SNPs were evaluated as haplotypes. The associations of haplotypes for selected gene regions and the risks of spina bifida were further studied. RESULTS: Nineteen SNPs were observed; 15 observed in controls had been submitted to the National Center for Biotechnology Information (NCBI) database with allele frequencies. The PAX3 gene variant T-1186C (rs16863657) and its related haplotype, TCTCCGCCC of nine SNPs, were found to be associated with an increased risk of spina bifida, with an OR of 3.5 (95% CI: 1.2-10.0) among Hispanic Whites. CONCLUSIONS: Our analyses indicated that PAX3 SNPs were not strong risk factors for human spina bifida. However, additional follow-up of the PAX3 gene variant T-1186C (rs16863657) and its related haplotype, TCTCCGCCC, may be important in other populations.  相似文献   

20.
Zhao H  Wang F  Wang J  Xie H  Guo J  Liu C  Wang L  Lu X  Bao Y  Wang G  Zhong R  Niu B  Zhang T 《Gene》2012,505(2):340-344
Protein-L-isoaspartate (D-aspartate) O-methyltransferase 1 (PCMT1) gene encodes for the protein repair enzyme L-isoaspartate (D-aspartate) O-methyltransferase (PIMT), which is known to protect certain neural cells from Bax-induced apoptosis. Previous study has shown that PCMT1 polymorphisms rs4552 and rs4816 of infant are associated with spina bifida in the Californian population. The association between maternal polymorphism and neural tube defects is still uncovered. A case-control study was conducted to investigate a possible association between maternal PCMT1 and NTDs in Lvliang high-risk area of Shanxi Province in China, using a high-resolution DNA melting analysis genotyping method. We found that increased risk for anencephaly in isolated NTDs compared with the normal control group was observed for the G (vs. A) allele (p=0.034, OR=1.896, 95% CI, 1.04-3.45) and genotypes GG+GA (p=0.025, OR=2.237, 95% CI, 1.09-4.57). Although the significance was lost after multiple comparison correction, the results implied that maternal polymorphisms in PCMT1 might be a potential genetic risk factor for isolated anencephaly in this Chinese population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号