首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Disruption of quorum sensing, bacterial cell-to-cell communication by means of small signal molecules, has been suggested as a new anti-infective strategy for aquaculture. However, data about the impact of quorum sensing on the virulence of aquatic pathogens are scarce. In this study, a model system using gnotobiotically cultured Artemia franciscana was developed in order to determine the impact of mutations in the quorum sensing systems of Aeromonas hydrophila, Vibrio anguillarum and V. harveyi on their virulence. Mutations in the autoinducer 2 (AI-2) synthase gene luxS, the AI-2 receptor gene luxP or the response regulator gene luxO of the dual channel quorum sensing system of V. harveyi abolished virulence of the strain towards Artemia. Moreover, the addition of an exogenous source of AI-2 could restore the virulence of an AI-2 non-producing mutant. In contrast, none of the mutations in either the acylated homoserine lactone (AHL)-mediated component of the V. harveyi system or the quorum sensing systems of Ae. hydrophila and V. anguillarum had an impact on virulence of these bacteria towards Artemia. Our results indicate that disruption of quorum sensing could be a good alternative strategy to combat infections caused by V. harveyi.  相似文献   

9.
Quorum sensing is the ability of bacteria to communicate and coordinate behavior emitting signaling molecules. A series of primers for PCR detection of Serratia spp. has been designed using as targets the pfs and luxS genes involved in AI-2-dependent quorum sensing. The identities of the PCR products (193 and 102 bp) were confirmed by commercial sequencing. Twenty-seven Serratia strains (representing 10 different species) tested positive for the presence of the pfs and luxS genes, while a total of 7 different species of non-Serratia (25 strains) were tested and gave negative results. The sensitivity and specificity of the pfs- and luxS-based PCR assay were also checked in artificially contaminated bacterial samples. In this study we established a novel method to detect Serratia using quorum-sensing genes as diagnostic markers.  相似文献   

10.
Plummer P  Zhu J  Akiba M  Pei D  Zhang Q 《PloS one》2011,6(1):e15876
Autoinducer-2 (AI-2) mediated quorum sensing has been associated with the expression of virulence factors in a number of pathogenic organisms and has been demonstrated to play a role in motility and cytolethal distending toxin (cdt) production in Campylobacter jejuni. We have initiated the work to determine the molecular basis of AI-2 synthesis and the biological functions of quorum sensing in C. jejuni. In this work, two naturally occurring variants of C. jejuni 81116 were identified, one producing high-levels of AI-2 while the other is defective in AI-2 synthesis. Sequence analysis revealed a G92D mutation in the luxS gene of the defective variant. Complementation of the AI-2(-) variant with a plasmid encoded copy of the wild-type luxS gene or reversion of the G92D mutation by site-directed mutagenesis fully restored AI-2 production by the variant. These results indicate that the G92D mutation alone is responsible for the loss of AI-2 activity in C. jejuni. Kinetic analyses showed that the G92D LuxS has a ~100-fold reduced catalytic activity relative to the wild-type enzyme. Findings from this study identify a previously undescribed amino acid that is essential for AI-2 production by LuxS and provide a unique isogenic pair of naturally occurring variants for us to dissect the functions of AI-2 mediated quorum sensing in Campylobacter.  相似文献   

11.
12.
Let LuxS speak up in AI-2 signaling   总被引:8,自引:0,他引:8  
Quorum sensing is a process of bacterial cell-cell communication that uses small diffusible molecules to coordinate diverse behaviors in response to population density. The only quorum-sensing system shared by Gram-positive and Gram-negative bacteria involves the production of autoinducer-2 (AI-2). The AI-2 synthase LuxS is widely distributed among the Bacteria, which suggests that AI-2 is a language for interspecies communication. However, LuxS is also an integral component of the activated methyl cycle in bacteria. LuxS-based quorum sensing has been intensively studied in the past decade, mostly in relation to the AI-2 molecule and the downstream effects of luxS knockouts; few studies have focused on the gene and protein activity itself. Ongoing attempts to dissect the metabolic and signaling roles of LuxS leave little doubt that unraveling the regulation of luxS expression and cellular LuxS activity is the key to understanding LuxS-based quorum sensing.  相似文献   

13.
AI-3 synthesis is not dependent on luxS in Escherichia coli   总被引:1,自引:0,他引:1       下载免费PDF全文
The quorum-sensing (QS) signal autoinducer-2 (AI-2) has been proposed to promote interspecies signaling in a broad range of bacterial species. AI-2 is spontaneously derived from 4,5-dihydroxy-2,3-pentanedione that, along with homocysteine, is produced by cleavage of S-adenosylhomocysteine (SAH) and S-ribosylhomocysteine by the Pfs and LuxS enzymes. Numerous phenotypes have been attributed to AI-2 QS signaling using luxS mutants. We have previously reported that the luxS mutation also affects the synthesis of the AI-3 autoinducer that activates enterohemorrhagic Escherichia coli virulence genes. Here we show that several species of bacteria synthesize AI-3, suggesting a possible role in interspecies bacterial communication. The luxS mutation leaves the cell with only one pathway, involving oxaloacetate and l-glutamate, for de novo synthesis of homocysteine. The exclusive use of this pathway for homocysteine production appears to alter metabolism in the luxS mutant, leading to decreased levels of AI-3. The addition of aspartate and expression of an aromatic amino acid transporter, as well as a tyrosine-specific transporter, restored AI-3-dependent phenotypes in an luxS mutant. The defect in AI-3 production, but not in AI-2 production, in the luxS mutant was restored by expressing the Pseudomonas aeruginosa S-adenosylhomocysteine hydrolase that synthesizes homocysteine directly from SAH. Furthermore, phenotype microarrays revealed that the luxS mutation caused numerous metabolic deficiencies, while AI-3 signaling had little effect on metabolism. This study examines how AI-3 production is affected by the luxS mutation and explores the roles of the LuxS/AI-2 system in metabolism and QS.  相似文献   

14.
In a process called quorum sensing, bacteria communicate with one another using secreted chemical signalling molecules termed autoinducers. A novel autoinducer called AI-2, originally discovered in the quorum-sensing bacterium Vibrio harveyi, is made by many species of Gram-negative and Gram-positive bacteria. In every case, production of AI-2 is dependent on the LuxS autoinducer synthase. The genes regulated by AI-2 in most of these luxS-containing species of bacteria are not known. Here, we describe the identification and characterization of AI-2-regulated genes in Salmonella typhimurium. We find that LuxS and AI-2 regulate the expression of a previously unidentified operon encoding an ATP binding cassette (ABC)-type transporter. We have named this operon the lsr (luxS regulated) operon. The Lsr transporter has homology to the ribose transporter of Escherichia coli and S. typhimurium. A gene encoding a DNA-binding protein that is located adjacent to the Lsr transporter structural operon is required to link AI-2 detection to operon expression. This gene, which we have named lsrR, encodes a protein that represses lsr operon expression in the absence of AI-2. Mutations in the lsr operon render S. typhimurium unable to eliminate AI-2 from the extracellular environment, suggesting that the role of the Lsr apparatus is to transport AI-2 into the cells. It is intriguing that an operon regulated by AI-2 encodes functions resembling the ribose transporter, given recent findings that AI-2 is derived from the ribosyl moiety of S-ribosylhomocysteine.  相似文献   

15.
The bioluminescence assay system using Vibrio harveyi reporter strains were used to examine quorum-sensing autoinducer (AI) activity from Mannheimia haemolytica A1 cell-free culture supernatant. We showed that M. haemolytica A1 cell-free culture supernatant contains molecules that can stimulate the quorum-sensing system that regulates the expression of the luciferase operon in V. harveyi. Specifically, M. haemolytica A1 can stimulate only the quorum system 2 but not system 1, suggesting that the culture supernatant only contains molecules similar to AI-2 of V. harveyi. The bioluminescence assay was also used to show that culture supernatants from related Pasteurellaceae organisms, Pasteurella multocida, Pasteurella trehalosi, Actinobacillus suis and Actinobacillus pleuropneumoniae, also contain AI-2-like molecules. This is consistent with the presence of a luxS homolog in the genomes of P. multocida and A. pleuropneumoniae. A luxS homolog was cloned by PCR from M. haemolytica A1 using sequencing data from the ongoing genome sequencing project. The cloned luxS(M.h.) was able to complement AI-2 production in the Escherichia coli DH5alpha luxS mutant. This is the first report of a quorum-sensing activity in M. haemolytica A1 and suggests that this bacterium utilizes this mechanism to regulate expression of genes under specific conditions.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号