首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Epigenetics》2013,8(10):1165-1175
  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
Role of Bmi1 in H2A ubiquitylation and Hox gene silencing   总被引:1,自引:0,他引:1  
Posttranslational histone modifications play a crucial role in the regulation of chromatin structure and gene activity. In previous studies, we identified the histone H2A ubiquitin ligase as Ring2, together in a complex with Ring1, Bmi1, and HPH2 (human polyhomeotic 2). We report here that the oncogene Bmi1 stimulates H2A ubiquitylation both in vitro and in vivo and that Bmi1-regulated H2A ubiquitylation is required for Hox gene silencing and normal cell growth. Our studies indicate that Bmi1 maintains the integrity of the complex through simultaneous interactions with the other subunits. We reconstituted the functional human H2A ubiquitin ligase complex and a panel of subcomplexes of different subunits. Comparisons of the H2A ubiquitin ligase activities of these different complexes revealed that Bmi1 stimulates the H2A ubiquitin ligase activity of Ring2 (and Ring1). Additionally, we demonstrated that the HoxC5 gene is regulated by ubiquitylated H2A in HeLa cells and that ubiquitylated H2A is localized on 5' regulatory regions of the HoxC5 gene. The role of Bmi1 in H2A ubiquitylation and HoxC5 gene expression in vivo was analyzed by RNA interference experiments. Knockdown of Bmi1 causes a global and loci-specific loss of H2A ubiquitylation, up-regulation of the HoxC5 gene, and slower cell growth. Intriguingly, Ring2 binds to its target regions in Bmi1 knockdown cells. Therefore, our studies reveal that Bmi1 is required for H2A ubiquitylation and suggest that H2A ubiquitylation regulates Bmi1-mediated gene expression.  相似文献   

14.
Wang CY  Hua CY  Hsu HE  Hsu CL  Tseng HY  Wright DE  Hsu PH  Jen CH  Lin CY  Wu MY  Tsai MD  Kao CF 《PloS one》2011,6(7):e22209
Telomeric heterochromatin assembly in budding yeast propagates through the association of Silent Information Regulator (SIR) proteins with nucleosomes, and the nucleosome array has been assumed to fold into a compacted structure. It is believed that the level of compaction and gene repression within heterochromatic regions can be modulated by histone modifications, such as acetylation of H3 lysine 56 and H4 lysine 16, and monoubiquitylation of H2B lysine 123. However, it remains unclear as to whether or not gene silencing is a direct consequence of the compaction of chromatin. Here, by investigating the role of the carboxy-terminus of histone H2B in heterochromatin formation, we identify that the disorderly compaction of chromatin induced by a mutation at H2B T122 specifically hinders telomeric heterochromatin formation. H2B T122 is positioned within the highly conserved AVTKY motif of the αC helix of H2B. Heterochromatin containing the T122E substitution in H2B remains inaccessible to ectopic dam methylase with dramatically increased mobility in sucrose gradients, indicating a compacted chromatin structure. Genetic studies indicate that this unique phenotype is independent of H2B K123 ubiquitylation and Sir4. In addition, using ChIP analysis, we demonstrate that telomere structure in the mutant is further disrupted by a defect in Sir2/Sir3 binding and the resulting invasion of euchromatic histone marks. Thus, we have revealed that the compaction of chromatin per se is not sufficient for heterochromatin formation. Instead, these results suggest that an appropriately arrayed chromatin mediated by H2B C-terminus is required for SIR binding and the subsequent formation of telomeric chromatin in yeast, thereby identifying an intrinsic property of the nucleosome that is required for the establishment of telomeric heterochromatin. This requirement is also likely to exist in higher eukaryotes, as the AVTKY motif of H2B is evolutionarily conserved.  相似文献   

15.
16.
17.
18.
Epigenetic changes in chromatin state are associated with aging. Notably, two histone modifications have recently been implicated in lifespan regulation, namely acetylation at H4 lysine 16 in yeast and methylation at H3 lysine 4 (H3K4) in nematodes. However, less is known about other histone modifications. Here, we report that cellular aging is associated with increased ubiquitylation of histone H2B in yeast telomeric heterochromatin. An increase in ubiquitylation at histone H2B lysine 123 and methylations at both H3K4 and H3 lysine 79 (H3K79) was observed at the telomere-proximal regions of replicatively aged cells, coincident with decreased Sir2 abundance. Moreover, deficiencies in the H2B ubiquitylase complex Rad6/Bre1 as well as the deubiquitylase Ubp10 reduced the lifespan by altering both H3K4 and H3K79 methylation and Sir2 recruitment. Thus, these results show that low levels of H2B ubiquitylation are a prerequisite for a normal lifespan and the trans-tail regulation of histone modifications regulates age-associated Sir2 recruitment through telomeric silencing.  相似文献   

19.
20.
Historically, the first eukaryotic protein found to be modified by ubiquitin was H2A, originally isolated from HeLa cells in 1975 by Harrison Busch and coworkers as a histone-like, nonhistone chromosomal protein called A24. Ubiquitylated histones have subsequently been found in many eukaryotic species, and to date, the core histones H2A, H2B, H3, the linker histone H1, and the histone variant H2A.Z are known to carry this modification. Although first on the scene, it was only recently that studies on histone ubiquitylation have enjoyed a renaissance. Part of the reason for the relatively slow pace of research on this fascinating histone modification was the absence of a good genetic system with which to study its cellular roles. This changed in 2000, when histone H2B was found to be ubiquitylated in the budding yeast S. cerevisiae, an organism with a low histone gene copy number and highly tractable genetics. Another factor was the almost exclusive focus of research on the role of polyubiquitylation in protein turnover. Because histones are generally monoubiquitylated, a form of the modification that is not associated with protein degradation, the significance of this minimalist ubiquitin conjugation was not heavily pursued. But perhaps the key reason for the renewed interest in histone ubiquitylation was the unexpected discovery of the past year that ubiquitylated H2B plays an important role in the trans-histone methylation of histone H3, a modification with close ties to the regulation of gene expression. This review will highlight some of the recent findings on the regulation and cellular roles of H2B ubiquitylation in yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号