共查询到20条相似文献,搜索用时 15 毫秒
1.
The peroxisome plays a central role in the catabolic and anabolic pathways that contribute to the lipid homeostasis. Besides this main function, this organelle has gained functional diversity. Although several approaches have been used for peroxisomal proteome analysis, a quantitative protein expression analysis of peroxisomes from different tissues has not been elucidated yet. Here, we applied a 2-DE-based method on mouse liver and kidney peroxisomal enriched fractions to study the tissue-dependent protein expression. Ninety-one spots were identified from the 2-DE maps from pH 3.0-10.0 and 51 spots from the basic range corresponding to 31 peroxisomal proteins, 10 putative peroxisomal, 6 cytosolic, 17 mitochondrial and 1 protein from endoplasmic reticulum. Based on the identification and on the equivalent quality of both tissue preparations, the differences emerging from the comparison could be quantified. In liver, proteins involved in pathways such as alpha- and beta-oxidation, isoprenoid biosynthesis, amino acid metabolism and purine and pyrimidine metabolism were more abundant whereas in kidney, proteins from the straight-chain fatty acid beta-oxidation were highly expressed. These results indicate that tissue-specific functional classes of peroxisomal proteins could be relevant to study peroxisomal cellular responses or pathologies. Finally, a web-based peroxisomal proteomic database was built. 相似文献
2.
Di Sanzo M Gaspari M Misaggi R Romeo F Falbo L De Marco C Agosti V Quaresima B Barni T Viglietto G Larsen MR Cuda G Costanzo F Faniello MC 《Journal of proteome research》2011,10(12):5444-5453
Ferritin, the major intracellular iron-storage protein, is made of 24 subunits of two types, H and L. Besides regulating intracellular iron homeostasis, it has been found that ferritin, in particular the H subunit (FHC), is involved in different biological events such as cell differentiation and pathologic states (i.e., neurodegeneration and cancer). This study is aimed at investigating the whole-cell proteome of FHC-expressing and sh-RNA-silenced human metastatic melanoma cells (MM07(m)) in the attempt to identify and classify the highest number of proteins directly or indirectly controlled by the FHC. We identified about 200 differentially expressed proteins and classified them in clusters on the basis of their functions, as proteins involved in metabolic processes, cell adhesion, migration, and proliferation processes. Some of them have captured our attention because of their involvement in metabolic pathways related to tumor progression and metastasis. In vitro assays confirmed that the FHC-silenced MM07(m) cells are characterized by a decreased growth activity, a reduced invasiveness, and a reduced cell adhesion capability. Moreover, nude mice (CD1 nu/nu), subcutaneously injected with FHC-silenced MM07(m) cells, showed a remarkable 4-fold reduction of their tumor growth capacity compared to those who received the FHC-unsilenced MM07(m) counterpart. In conclusion, these data indicate that gene silencing technology, coupled to proteomic analysis, is a powerful tool for a better understanding of H ferritin signaling pathways and lend support to the hypothesis that specific targeting of this gene might be an attractive and potentially effective strategy for the management of metastatic melanoma. 相似文献
3.
Gimenez M Marie SK Oba-Shinjo SM Uno M da Silva R Laure HJ Izumi C Otake A Chammas R Rosa JC 《Proteomics》2012,12(17):2632-2640
Previously, we reported that nucleophosmin (NPM) was increased in glioblastoma multiforme (GBM). NPM is a phosphoprotein related to apoptosis, ribosome biogenesis, mitosis, and DNA repair, but details about its function remain unclear. We treated U87MG and A172 cells with small interference RNA (siRNA) and obtained a reduction of 80% in NPM1 expression. Knockdown at the protein level was evident after the 4th day and was maintained until the 7th day of transfection that was investigated by quantitative proteomic analysis using isobaric tags. The comparison of proteomic analysis of NPM1-siRNA against controls allowed the identification of 14 proteins, two proteins showed increase and 12 presented a reduction of expression levels. Gene ontology assigned most of the hypoexpressed proteins to apoptosis regulation, including GRP78. NPM1 silencing did not impair cell proliferation until the 7th day after transfection, but sensitized U87MG cells to temozolomide (TMZ), culminating with an increase in cell death and provoking at a later period a reduction of colony formation. In a large data set of GBM patients, both GRP78 and NPM1 genes were upregulated and presented a tendency to shorter overall survival time. In conclusion, NPM proved to participate in the apoptotic process, sensitizing TMZ-treated U87MG and A172 cells to cell death, and in association with upregulation of GRP78 may be helpful as a predictive factor of poor prognosis in GBM patients. 相似文献
4.
5.
6.
7.
Okamura N Masuda T Gotoh A Shirakawa T Terao S Kaneko N Suganuma K Watanabe M Matsubara T Seto R Matsumoto J Kawakami M Yamamori M Nakamura T Yagami T Sakaeda T Fujisawa M Nishimura O Okumura K 《Proteomics》2008,8(15):3194-3203
Renal cell carcinoma (RCC) is relatively resistant to chemotherapy and radiotherapy. Recent advances in drug development are providing novel agents for the treatment of RCC, but the effects are still minimal. In addition, there is an urgent need to identify diagnostic markers for RCC. In this report, to discover potential diagnostic markers and therapeutic targets, we subjected RCC samples to a quantitative proteomic analysis utilizing 2-nitrobenzenesulfenyl (NBS) reagent. Proteins were extracted from RCC and adjacent normal tissue, obtained surgically from patients, and labeled with NBS reagent containing six (12)C or (13)C. This was followed by trypsin digestion and the enrichment of labeled peptides. Samples were then subjected to analysis by MALDI-TOF MS. NBS-labeled peptides with a 6 Da difference were identified by MS/MS. Thirty-four proteins were upregulated in more than 60% of the patients of which some were previously known, and some were novel. The identity of a few proteins was confirmed by Western blotting and quantitative real time RT-PCR. The results suggest that NBS-based quantitative proteomic analysis is useful for discovering diagnostic markers and therapeutic targets for RCC. 相似文献
8.
9.
10.
A single step ion-exchange chromatography on a sulfo-propyl (SP)- Sepharose column was performed to separate both the high molecular weight (HMW)- and low molecular weight (LMW)- forms of enzymatically active urokinase type plasminogen activator from human kidney (HT1080) cell culture media. The level of urokinase secreted by the cell line reached to about 145 Plough units/ml culture broth within 48 h of cultivation. The conditioned cell culture media was applied directly to the column without any prior concentration steps. Polyacrylamide gel electrophoresis of the column eluates in the presence of sodium dodecyl sulphate showed that the cell line secretes three forms of two-chain high molecular weight (HMW) urokinase of molecular weights (M(r)) 64,000, 60,900 and 55,000. In addition, two low molecular weight (LMW) forms of M(r) 22,000 and 20,000; proteolytic cleavage products of HMW, were also found. The HMW and LMW forms had intrinsic plasminogen dependent proteolytic activity as judged by zymographic analysis. The specific activity of the pooled peak fractions increased (approximately 93-fold) to values as high as 1481 Plough units/ mg protein. Both HMW as well as LMW forms were obtained in significantly high yields. 相似文献
11.
Mitochondrial proteomic analysis of a cell line model of familial amyotrophic lateral sclerosis 总被引:3,自引:0,他引:3
Fukada K Zhang F Vien A Cashman NR Zhu H 《Molecular & cellular proteomics : MCP》2004,3(12):1211-1223
Mutations in copper-zinc superoxide dismutase (SOD1) have been linked to a subset of familial amytrophic lateral sclerosis (fALS), a fatal neurodegenerative disease characterized by progressive motor neuron death. An increasing amount of evidence supports that mitochondrial dysfunction and apoptosis activation play a critical role in the fALS etiology, but little is known about the mechanisms by which SOD1 mutants cause the mitochondrial dysfunction and apoptosis. In this study, we use proteomic approaches to identify the mitochondrial proteins that are altered in the presence of a fALS-causing mutant G93A-SOD1. A comprehensive characterization of mitochondrial proteins from NSC34 cells, a motor neuron-like cell line, was achieved by two independent proteomic approaches. Four hundred seventy unique proteins were identified in the mitochondrial fraction collectively, 75 of which are newly discovered proteins that previously had only been reported at the cDNA level. Two-dimensional gel electrophoresis was subsequently used to analyze the differences between the mitochondrial proteomes of NSC34 cells expressing wild-type and G93A-SOD1. Nine and 36 protein spots displayed elevated and suppressed abundance respectively in G93A-SOD1-expressing cells. The 45 spots were identified by MS, and they include proteins involved in mitochondrial membrane transport, apoptosis, the respiratory chain, and molecular chaperones. In particular, alterations in the post-translational modifications of voltage-dependent anion channel 2 (VDAC2) were found, and its relevance to regulating mitochondrial membrane permeability and activation of apoptotic pathways is discussed. The potential role of other proteins in the mutant SOD1-mediated fALS is also discussed. This study has produced a short list of mitochondrial proteins that may hold the key to the mechanisms by which SOD1 mutants cause mitochondrial dysfunction and neuronal death. It has laid the foundation for further detailed functional studies to elucidate the role of particular mitochondrial proteins, such as VDAC2, in the pathogenesis of familial ALS. 相似文献
12.
Karsan A Pollet I Yu LR Chan KC Conrads TP Lucas DA Andersen R Veenstra T 《Molecular & cellular proteomics : MCP》2005,4(2):191-204
The endothelium forms a continuous monolayer at the interface between blood and tissue and contributes significantly to the sensing and transducing of signals between blood and tissue. New blood vessel formation, or angiogenesis, is initiated by the activation of endothelial cells and is an important process required for various pathological and physiological situations. This study used cleavable isotope-coded affinity tag reagents combined with mass spectrometry to investigate the molecular basis of a recently discovered angiogenesis-promoting steroid, sokotrasterol sulfate. Changes in the relative abundances of over 1000 proteins within human endothelial cells treated with sokotrasterol sulfate and vehicle-treated cells were identified and quantitated using this technique. A method that examines the entire ensemble of quantitative measurements was developed to identify proteins that showed a statistically significant change in relative abundance resulting from treatment with sokotrasterol sulfate. A total of 93 proteins was significantly up-regulated, and 37 were down-regulated in response to sokotrasterol sulfate stimulation of endothelial cells. Among the up-regulated proteins, several were identified that are novel to endothelial cells and are likely involved in cell communication and morphogenesis. These findings are consistent with a role for sokotrasterol sulfate in endothelial sprouting. 相似文献
13.
Induction of apoptosis in Jeko-1 mantle cell lymphoma cell line by resveratrol: a proteomic analysis
Cecconi D Zamò A Parisi A Bianchi E Parolini C Timperio AM Zolla L Chilosi M 《Journal of proteome research》2008,7(7):2670-2680
Therapies for mantle cell lymphoma (MCL) are clinically unsatisfactory, and the search for effective drugs in vitro might foster the evaluation of their activity in vivo. We have investigated the effects of the polyphenolic compound resveratrol on the MCL cell line Jeko-1 using a combination of flow cytometry, Western blotting and two-dimensional electrophoresis to identify the molecules involved in the induction of apoptosis and cell growth regulation. We show that resveratrol induces apoptosis in Jeko-1 cells and modulates several key molecules, including cyclin D1 (CCND1), p53 (TP53), p21 (CDKN1A), BCL2, BAX, Bcl XL (BCL2L1), caspase 9 (CASP9) and p27 (CDKN1B). By high-resolution 2D-PAGE and nano-reverse phase-high performance liquid chromatography coupled with tandem mass spectrometry, we identified 32 differentially expressed proteins in response to resveratrol treatment that belong to important cell death related networks (including c-myc, NF-kappaB and the mitochondrial apoptotic pathway). These findings may improve the understanding of mechanisms mediating the pro-apoptotic effects of resveratrol on MCL cells, and form the basis for its potential use as a therapeutic agent. 相似文献
14.
Establishment of a human embryonic germ cell line and comparison with mouse and human embryonic stem cells 总被引:4,自引:0,他引:4
Human embryonic stem (ES) cells and embryonic germ (EG) cells are pluripotent and are invaluable material for in vitro studies of human embryogenesis and cell therapy. So far, only two groups have reported the establishment of human EG cell lines, whereas at least five human ES cell lines have been established. To see if human EG cell lines can be reproducibly established, we isolated primordial germ cells (PGCs) from gonadal ridges and mesenteries (9 weeks post-fertilization) and cultured them on mouse STO cells. As with mouse ES colonies, the PGC-derived cells have given rise to multilayered colonies without any differentiation over a year of continuous culture. They are karyotypically normal and express high levels of alkaline phosphatase, Oct-4, and several cell-surface markers. Histological and immunocytochemical analysis of embryoid bodies (EBs) formed from floating cultures of the PGC-derived cell colonies revealed ectodermal, endodermal, and mesodermal tissues. When the EBs were cultured in the presence of insulin, transferrin, sodium selenite, and fibronectin for 1 week, markers of primitive neuroectoderm were expressed in cells within the EBs as well as in cells growing out from the EBs. These observations indicate that our PGC-derived cells satisfy the criteria for pluripotent stem cells and hence may be EG cells. 相似文献
15.
Gastrin-releasing peptide (GRP) and its receptor (GRPR) are aberrantly up-regulated in colon cancer. When expressed, they act as morphogens, retaining tumor cells in a better differentiated state and retarding metastasis. To identify targets activated in response to GRPR signaling we studied Caco-2 and HT-29 cells, colon cancer cell lines that expresses GRPR as a function of confluence. Total cell protein was extracted from pre-confluent cells (expressing GRP/GRPR) cultured in serum-free media in the presence or absence of GRPR-specific antagonist; as well as from confluent cells that do not express GRPR. Overall, we identified 5 proteins that are specifically down-regulated after GRP/GRPR expression: Bach2, creatine kinase B, p47, and two that could not be identified; and 6 proteins that are up-regulated: gephyrin, HSP70, HP1, ICAM-1, ACAT, and one that could not be identified. These findings suggest that the mechanism(s) by which GRP/GRPR mediate its morphogenic effects in colon cancer involve the actions of a number of hitherto unappreciated proteins. 相似文献
16.
17.
Rice is susceptible to cold stress and with a future of climatic instability we will be unable to produce enough rice to satisfy increasing demand. A thorough understanding of the molecular responses to thermal stress is imperative for engineering cultivars, which have greater resistance to low temperature stress. In this study we investigated the proteomic response of rice seedlings to 48, 72 and 96?h of cold stress at 12-14°C. The use of both label-free and iTRAQ approaches in the analysis of global protein expression enabled us to assess the complementarity of the two techniques for use in plant proteomics. The approaches yielded a similar biological response to cold stress despite a disparity in proteins identified. The label-free approach identified 236 cold-responsive proteins compared to 85 in iTRAQ results, with only 24 proteins in common. Functional analysis revealed differential expression of proteins involved in transport, photosynthesis, generation of precursor metabolites and energy; and, more specifically, histones and vitamin B biosynthetic proteins were observed to be affected by cold stress. 相似文献
18.
A new approach for qualitative and quantitative proteomic analysis using capillary liquid chromatography and mass spectrometry to study the protein expression response in mycobacteria following isoniazid treatment is discussed. In keeping with known effects on the fatty acid synthase II pathway, proteins encoded by the kas operon (AcpM, KasA, KasB, Accd6) were significantly overexpressed, as were those involved in iron metabolism and cell division suggesting a complex interplay of metabolic events leading to cell death. 相似文献
19.
Cho H Kang ES Hong SW Oh YJ Choi SM Kim SW Kim SH Kim YT Lee KS Choi YK Kim JH 《Molecular and cellular biochemistry》2008,319(1-2):189-201
The existence of several model systems with which to investigate a particular disease is advantageous for researchers. This is especially true for ovarian cancer, which, due to its complex and heterogeneous nature, inherently requires a large number of model systems. Here, we report a new ovarian serous adenocarcinoma cell line, designated YDOV-157, and characterized via post genomics and post proteomics. In this study, primary culture of tumor cells from ascites was performed and the cells were immortalized up to at least 60 passages in vitro. We studied the morphologies, cell proliferation, BRCA1/2 mutations, tumorigenesis capacity, and chemosensitivity of YDOV-157. Using a cDNA microarray, differentially expressed genes were identified and some of them were validated. Using proteomic analysis, we identified proteins that were differentially expressed in YDOV-157. The newly derived cell line, designated YDOV-157, grew as a monolayer and the doubling time was 102 h. When transplanted into nude mice, it initiated the formation of tumor masses with microscopic findings identical to those of the primary tumor. Chemosensitivity test showed that paclitaxel induced the highest chemosensitivity index. In microarray analysis, 2,520 probes were differently expressed, compared to human ovarian surface epithelial cells (HOSEs). In SYBR Green real-time PCR, the expression of E2F2 (P = 0.040) and CRABP2 genes (P = 0.030) was significantly higher in the ovarian cancer cell lines than in HOSEs. Furthermore, proteomic analysis showed that expression of 28 spots was significantly altered between YDOV-157 and HOSE. In conclusion, the newly derived YDOV-157 cell line may be an important research resource for studying cancer cell biology and should also be very useful for developing new strategies that inhibit cancer cell growth and progression. 相似文献
20.
Quantitative comparison of a human cancer cell surface proteome between interphase and mitosis 下载免费PDF全文
Mohammad H Qureshi Yusuke Toyoda Bernhard Y Renard Gürkan Mollaoglu Nazlı E Özkan Selda Bulbul Ina Poser Wiebke Timm Anthony A Hyman Timothy J Mitchison Judith A Steen 《The EMBO journal》2015,34(2):251-265
The cell surface is the cellular compartment responsible for communication with the environment. The interior of mammalian cells undergoes dramatic reorganization when cells enter mitosis. These changes are triggered by activation of the CDK1 kinase and have been studied extensively. In contrast, very little is known of the cell surface changes during cell division. We undertook a quantitative proteomic comparison of cell surface‐exposed proteins in human cancer cells that were tightly synchronized in mitosis or interphase. Six hundred and twenty‐eight surface and surface‐associated proteins in HeLa cells were identified; of these, 27 were significantly enriched at the cell surface in mitosis and 37 in interphase. Using imaging techniques, we confirmed the mitosis‐selective cell surface localization of protocadherin PCDH7, a member of a family with anti‐adhesive roles in embryos. We show that PCDH7 is required for development of full mitotic rounding pressure at the onset of mitosis. Our analysis provided basic information on how cell cycle progression affects the cell surface. It also provides potential pharmacodynamic biomarkers for anti‐mitotic cancer chemotherapy. 相似文献