首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The alteration in both the lipid composition and chlorophyll proteins obtained by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of detergent solubilized thylakoids was investigated on differentially aged spinach (Spinacia oleracea L.) chloroplasts. Freshly isolated material demonstrated seven major bands upon electrophoretic fractionation. Membranes aged in vitro showed a diminution and/or a disappearance of some bands concomitant with changes in the acyl lipid composition of these membranes. The extent of these changes was influenced by the purity of the preparation. Low temperature fluorescence measurements (77K) showed that upon aging, the photochemical capacity of photosystem II decreased prior to alterations in the molecular organization of the photochemical apparatus as indicated by the energy distribution between the two photosystems.  相似文献   

2.
The irradiance dependence of the efficiencies of photosystems I and II were measured for two pea (Pisum sativum [L.]) varieties grown under cold conditions and one pea variety grown under warm conditions. The efficiencies of both photosystems declined with increasing irradiance for all plants, and the quantum efficiency of photosystem I electron transport was closely correlated with the quantum efficiency of photosystem II electron transport. In contrast to the consistent pattern shown by efficiency of the photosystems, the redox state of photosystem II (as estimated from the photochemical quenching coefficient of chlorophyll fluorescence) exhibited relationships with both irradiance and the reduction of P-700 that varied with growth environment and genotype. This variability is considered in the context of the modulation of photosystem II quantum efficiency by both photochemical and nonphotochemical quenching of excitation energy.  相似文献   

3.
Effect of High Cation Concentrations on Photosystem II Activities   总被引:2,自引:2,他引:0  
Baker NR 《Plant physiology》1978,62(6):889-893
The effects of wide concentration ranges of NaCl, KCl, and MgCl2 on ferricyanide reduction and the fluorescence induction curve of isolated spinach (Spinacia oleracea) chloroplasts were investigated. Concentrations of the monovalent salts above 100 mm and MgCl2 above 25 mm produced a decrease in the rate of ferricyanide reduction by thylakoids uncoupled with 2.5 mm NH4Cl which cannot be attributed to changes in the primary photochemical capacity of photosystem II. Salt-induced decreases in the effective concentration of the secondary electron acceptor of photosystem II, plastoquinone, reduce the capacity for secondary photochemistry of photosystem II and this could contribute to the reduction in ferricyanide reduction by uncoupled thylakoids at high salinities. The rate of ferricyanide reduction by coupled thylakoids is little affected by salinity changes, indicating that the rate-limiting phosphorylation mechanism in electron flow from water to ferricyanide in coupled thylakoids is salt-tolerant, whereas the rate-limiting reaction in uncoupled ferricyanide reduction is considerably affected by salinity changes. Salt-induced changes in the fluorescence induction curve are interpreted in terms of changes in the rate constants for excitation decay by radiationless transitions, exciton transfer from photosystem II chlorophylls to other associated chlorophyll species, and photochemistry.  相似文献   

4.
P. Horton  P. Lee 《Planta》1985,165(1):37-42
Thylakoids isolated from peas (Pisum sativum cv. Kelvedon Wonder) and phosphorylated by incubation with ATP have been compared with non-phosphorylated thylakoids in their sensitivity to photoinhibition by exposure to illumination in vitro. Assays of the kinetics of fluorescence induction at 20° C and the fluorescence emission spectra at-196° C indicate a proportionally larger decrease in fluorescence as a result of photoinhibitory treatment of non-phosphorylated compared with phosphorylated thylakoids. It is concluded that protein phosphorylation can afford partial protection to thylakoids exposed to photoinhibitory conditions.Abbreviations and symbols DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - F 0 Level of chlorophyll fluorescence when photosystem 2 traps are open - F m Level of chlorphyll fluorescence when photosystem 2 traps are closed - P Maximum level of fluorescence reached in the absence of DCMU - PSI (II) photosystem I(II)  相似文献   

5.
A comparative study was made of the effects of high concentrations of NaCl, KCl and MgCl2 on two electron transport reactions of thylakoids isolated from a mesophyte, Pisum sativum and a halophyte, Aster tripolium . The rate of photosystem I mediated electron transport from reduced N, N, N', N'-tetramethyl- p -phenylenediamine (TMPD) to methyl viologen was determined polarographically, and photosystem II mediated electron flow from water to 2,6-dichlorophenolindophenol (DCPIP) was monitored spectrophotometrically. The response of photosystem II to increasing in vitro salt concentrations was similar for thylakoids isolated from both A. tripolium and P. sativum , but differences in the response of photosystem I to salinity changes were observed for the two species. Increasing NaCl, KCl and MgCl2 concentrations produced similar patterns of response of photosystem I activity in P. sativum thylakoids, whilst for A. tripolium KCl induced a completely different response pattern compared to NaCl and MgCl2. The salinity of the culture medium in which A. tripolium was grown also had an effect on both the absolute in vitro activities of photosystems I and II and their response to changes in salt concentration of the reaction media.  相似文献   

6.
Chloroplasts from 17-d-old pea leaves (Pisum sativum L.) wereisolated to elucidate the requirements for the light-induceddegradation of stromal proteins. The influence of electron transportthrough the thylakoids and the influence of ATP on protein degradationwere investigated. When chloroplasts were incubated in the light(45 µmol m–2s–1), glutamine synthetase, thelarge subunit of ribulose-1,5-bisphosphate carboxylase and glutamatesynthase were degraded, whereas phosphoribulokinase, ferredoxin-NADP+reductase and the 33 kDa protein of photosystem II remainedmore stable. Major protein degradation was not observed over240 mm in darkness. The electron transport inhibitor dichlorophenyldimethylureareduced protein degradation in the light over several hours,whereas dibromothymoquinone was less effective. Inhibiting theproduction of ATP with tentoxin or by destroying the  相似文献   

7.
Photosynthetic Properties of Guard Cell Protoplasts from Vicia faba L.   总被引:3,自引:0,他引:3  
Guard cell protoplasts were isolated enzymatically from theepidermis of Vicia faba L. and their photosynthetic activitieswere investigated. Time courses of light-induced changes inthe chlorophyll a fluorescence intensity of these protoplastsshowed essentially the same induction kinetics as found formesophyll protoplasts of Vicia. The transient change in thefluorescence intensity was affected by DCMU, an inhibitor ofphotosystem II; by phenylmercuric acetate, an inhibitor of ferredoxinand ferredoxin NADP reductase; and by methyl viologen, an acceptorof photosystem I. Low temperature (77 K) emission spectra ofthe protoplasts had peaks at 684 and 735 nm and a shoulder near695 nm. A high O2 uptake (175 µmol mg–1 Chl hr–1)was observed in guard cell protoplasts kept in darkness, whichwas inhibited by 2 mM KCN or NaN3 by about 60%. On illumination,this O2 uptake was partially or completely suppressed, but itssuppression was removed by DCMU, which indicates that oxygenwas evolved (150 µmol mg–1 Chl hr–1) photosynthetically.We concluded that both photosystems I and II function in guardcell chloroplasts and that these protoplasts have high respiratoryactivity. (Received January 30, 1982; Accepted May 15, 1982)  相似文献   

8.
The consequences of chloroplast ageing in vitro were furtherinvestigated, especially on the photochemical activities ofthese organelles. Ageing of chloroplasts in dark was accompanied by decreasesin activities for photohydrolysis and cyclic and non-cyclicsyntheses of ATP, photoreduction of NADP+ and O2 evolution;but there was no decrease in ferricyanide photoreduction. Therates of decrease in these activities were comparable to therate of increase in chloroplast volume. Complete inhibitionswere reached when maximum chloroplast swelling had occurred,i.e. after 5 to 6 hr of incubation at 20?C in a Tris-NaCl (pH8) medium. Ageing in the light resulted in much accelerateddecreases in activities tested; the loss of capacity for light-inducedshrinkage was also accelerated by the light during ageing. Thus,light acts synergetically towards the ageing process. Moreover,light and, to a less extent, dark ageing, resulted in an uncouplingof chloroplast photophosphorylation and associated electronflow measured by ferricyanide photoreduction. The part of theelectron flow which is induced by coupling (+ ADP, Pi, MgCl2,pH 8) or by uncoupling (+ NH4C1, pH 7) was found to be verysensitive to light ageing. The NADP+ photoreduction loss wasrestored by addition of the ascorbate-DCPIP electron donor system,suggesting that ageing interferes with the integrity of photosystemII. In many respects, these effects of ageing are comparable withthe action of detergents and fatty acids on the structure andphotochemical activities of chloroplasts, especially in thatthey attack the energy transducing mechanism in chloroplasts. (Received May 24, 1969; )  相似文献   

9.
The effects of GA fixation on electron transfers in photosystemsI and II in photosynthesis and energy dependent reactions ofchloroplasts, such as changes in light scattering, H+ uptakeand 515-nm absorbance, were investigated. Fixation of chloroplastswith GA resulted in a lowering of the DCIP and MV photoreductions.DCIP photoreduction activity in fixed chloroplasts was not restoredin the presence of DPC, an electron donor to photosystem II,but was significantly stimulated by DPC when chloroplasts werefixed after aging. The results suggest that the inhibitory effectof GA fixation on photosystem II differs in its mechanism fromthose of treatments such as heating, Tris-washing and aging.The oxidation-reduction reaction of P700 was depressed by GAfixation. Energy dependent reactions in fixed chloroplasts were more markedlydepressed than were electron transfers. Fixed chloroplasts showeda slight conformational response in the presence of PMS. Analysis of the emission spectrum and the induction of chlorophylla fluorescence in fixed chloroplasts suggested that the twopigment systems were partially disordered and that the correspondingprimary photochemical processes were inhibited. (Received November 21, 1972; )  相似文献   

10.
The electric potential changes induced by flashing and continuouslight were measured with microcapillary electrodes in isolatedwhole chloroplasts of Peperomia inetallica. In continuous lightthe chloroplast electrical potential rose in two phases. Theinitial rapid phase coincided in extent with the flash-inducedpotential and was insensitive to the electron transfer inhibitorDBMIB. The subsequent phase was relatively slow (20–30ms) and was inhibited by DBMIB. Electron acceptors of photosystemII (p-phenylendiamine, p-benzoquinone) added to DBMIB-treatedchloroplasts produced a suppression of the flash-induced responseand a considerable increase in the steady level of the potentialin the light. The electrical potential associated with the activityof photosystem II rose in continuous light much more slowlythan that associated with the activity of photosystem I aloneor the activities of both photosystems. Illumination of chloroplastswith successive flashes at a repetition rate 5 Hz in the presenceof oxaloacetate, a terminal acceptor of photosystem I, was accompaniedwith a gradual decline of the flash-induced potential. The specificrole of two photosystems in the light-induced H+ transport andthe electrogenesis across the chloroplast thylakoid membranesis discussed.  相似文献   

11.
Fluorimetric, photoacoustic, polarographic and absorbance techniques were used to measure in situ various functional aspects of the photochemical apparatus of photosynthesis in intact pea leaves (Pisum sativum L.) after short exposures to a high temperature of 40 ° C. The results indicated (i) that the in-vivo responses of the two photosystems to high-temperature pretreatments were markedly different and in some respects opposite, with photosystem (PS) II activity being inhibited (or down-regulated) and PSI function being stimulated; and (ii) that light strongly interacts with the response of the photosystems, acting as an efficient protector of the photochemical activity against its inactivation by heat. When imposed in the dark, heat provoked a drastic inhibition of photosynthetic oxygen evolution and photochemical energy storage, correlated with a marked loss of variable PSII-chlorophyll fluorescence emission. None of the above changes were observed in leaves which were illuminated during heating. This photoprotection was saturated at rather low light fluence rates (around 10 W · m–2). Heat stress in darkness appeared to increase the capacity for cyclic electron flow around PSI, as indicated by the enhanced photochemical energy storage in far-red light and the faster decay of P 700 + (oxidized reaction center of PSI) monitored upon sudded interruption of the far-red light. The presence of light during heat stress reduced somewhat this PSI-driven cyclic electron transport. It was also observed that heat stress in darkness resulted in the progressive closure of the PSI reaction centers in leaves under steady illumination whereas PSII traps remained largely open, possibly reflecting the adjustment of the photochemical efficiency of undamaged PSI to the reduced rate of photochemistry in PSII.Abbreviations B1 and B2 fraction of closed PSI and PSII reaction centers, respectively - ES photoacoustically measured energy storage - Fo, Fm and Fs initial, maximal and steady-state levels of chlorophyll fluorescence - P700 reaction center of PSI - PS (I, II) photosystem (I, II) - V = (Fs – Fo)/(Fm – Fo) relative variable chlorophyll fluorescence We wish to thank Professor R. Lannoye (ULB, Brussels) for the use of this photoacoustic spectrometer and Mrs. M. Eyletters for her help.  相似文献   

12.
The halophyte Salicornia bigelovii Torr. shows optimal growthand Na+ accumulation in 200 mM NaCl and reduced growth underlower salinity conditions. The ability to accumulate and compartmentalizeNa+ may result, in part, from stimulation of the H+ -ATPaseson the plasma membrane (PM-ATPase) and vacuolar membranes (V-ATPase).To determine if these two primary transport systems are involvedin salt tolerance, shoot fresh weight (FW) and activity of thePM- and V-ATPases from shoots in Salicornia grown in 5 and 200mM NaCI were compared. Higher PM-ATPase activity (60%) and FW(60%) were observed in plants grown in 200 mM NaCI and thesestimulations in growth and enzyme activity were specific forNa+ and not observed with Na+ added in vitro. V-ATPase activitywas significantly stimulated in vivo and in vitro (26% and 46%,respectively) after exposure to 200 mM NaCl, and stimulationwas Na+ -specific. Immunoblots indicated that the increasesin activity of the H+ -ATPases from plants grown in 200 mM NaCIwas not due to increases in protein expression. These studiessuggest that the H+-ATPases in Salicornia are important in salttolerance and provide a biochemical framework for understandingmechanisms of salt tolerance in plants. Key words: Salicornia, H+-ATPases, salt tolerance  相似文献   

13.
Hardt H  Kok B 《Plant physiology》1978,62(1):59-63
Bundle sheath and mesophyll chloroplasts from Zea mays showed comparable rates of O2 evolution, which amounted to about half of the rate observed in spinach (Spinacia oleracea) chloroplasts.

Ratios of 4.5, 4.6, and 6.2 Mn2+ atoms per 400 chlorophylls were observed in mesophyll, bundle sheath, and spinach chloroplasts, respectively. These ratios roughly correspond to the observed O2 evolution rates.

Rates of electron transport from water to methylviologen (photosystem I and II) in both types of corn chloroplasts were about one-third that in spinach. Compared to spinach, transport rates from reduced diaminodurene to methylviologen (photosystem I) were about one-third and greater than one-half in mesophyll and bundle sheath material, respectively.

In both types of corn chloroplasts, electron flow from photosystem II to P700 was abnormal. This observation, together with the low rates of all activities, suggests that damage occurred during isolation. Such damage may limit the quantitative significance of observations made with these materials (including the following data).

Measurements of flash yields of O2 evolution or O2 uptake showed that the size of the photosynthetic unit was the same in photosystems I and II and in all three types of chloroplasts (about 400 chlorophylls per equivalent).

Similarity of the photochemical cross-section of the two photosystems in the three preparations was also found in optical experiments: that is the half-times of the fluorescence rise in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) (photosystem II) and of the photooxidation of P700 (photosystem I).

The ratio of P700 to chlorophyll appeared to be about 2-fold higher in bundle sheath chloroplasts than in the other materials (1/200 versus 1/400).

  相似文献   

14.
The contents of photosystem I and photosystem II reaction centers,cytochrome c-553, cytochrome c-550, cytochrome f, cytochromeb-559, cytochrome b-563, plastoquinone and vitamin K1 in thecyanobacterium Synechococcus sp. were determined. About threephotosystem I reaction centers were present for each photosystemII reaction center. The amounts of cytochromes functioning betweenthe two photosystems were approximately half those of the photosystemI reaction center. Plastocyanin was not detected, while plastoquinoneand vitamin K1 were present in excess of other electron carriersand reaction centers. The results indicate the importance ofplastoquinone and cytochrome c-553 for cooperation of the tworeaction centers through electron transport. 1Present address: Toray Basic Research Laboratory, 1111 Tebiro,Kamakura, Kanagawa 248, Japan. (Received June 17, 1982; Accepted January 17, 1983)  相似文献   

15.
Properties of thylakoids isolated from leaves of three salt tolerant species, Avicennia germinans L., Avicennia marina var resinifera, and Beta vulgaris L., were not affected by the salinity in which the plants were grown. With increase in the growth salinity from 50 to 500 millimolar NaCl, there were no major effects on the per chlorophyll concentrations of lipids or proteins, or on the rates of uncoupled electron transport per chlorophyll mediated by either the whole chain or the partial reactions of photosystems I and II. Responses of the partial and whole chain reactions to variation in the sorbitol and NaCl concentrations in the assay media were independent of the salinity experienced during leaf growth and not substantially different from those of a salt-sensitive species, Cucurbita sativus L. Uncoupled rates of electron flow from water to p-benzoquinone mediated by photosystem II were insensitive to the NaCl concentration unless thylakoids were rendered Cl deficient by treatment with uncoupler under alkaline conditions. Loss of 65% to 85% of the photosystem II activity in these Cl-deficient thylakoids was restored by addition of 10 to 20 millimolar Cl.  相似文献   

16.
Two mutant strains (denoted as DCMUr-I and DCMUr-II) of theblue-green alga Aphanocapsa 6714, capable of growing in thepresence of 10–5 M DCMU (an inhibitor of electron transporton the acceptor side of photosystem II), were isolated. The DCMU sensitivity of growth rates and of two photosystemII activities, O2 emission and fluorescence, was investigatedin the mutant cells and compared with that of the wild type.The DCMU sensitivity of isolated thylakoids was also studied.The sensitivity of the mutant cells to other DCMU-type inhibitors(o-phenanthroline and atrazine) was tested. The results suggest that strain DCMUr-I resistance could bedue to the acquisition of a cellular permeability barrier toDCMU, expressed only after an adaptation phase in the presenceof the inhibitor. DCMUr-II resistance seems to be due primarilyto an alteration of the thylakoid membranes of the photosyntheticapparatus itself. (Received June 4, 1979; )  相似文献   

17.
The chlorophyll b-containing alga Mantoniella squamata was analyzed with respect to its capacity to balance the energy distribution from the light-harvesting antenna to photosystem I or photosystem II. It was shown, that this alga is unable to alter the absorption cross section of the two photosystems in terms of short-time regulations (state transitions). The energy absorbed by the LHC, which contains 60% of total photosynthetic pigments, is transferred to both photosystems without any preference. The stoichiometry of the two photosystems is found to be extremely unequal and variable during light adaptation. In high light, the molar ratio of P-680 per P-700 is found to be two, whereas under low light conditions this ratio accounts to nearly four. This very unbalanced stoichiometry of the reaction centers gives some new insights into the concept of the photosynthetic unit as well as in the importance of the regulation of the energy distribution. It is assumed that the high concentration of photosystem II can be understood as a mechanism to prevent the overexcitation of photosystem I. In addition, the changes im membrane protein pattern are not accompanied by variations in the ratio of appressed to nonappressed membranes as probed by ultrastructural analysis. It is suggested that the thylakoids are organized like a homogenous pigment bed. The lack of state transitions can be interpreted as a consequence of this unusual membrane morphology.Abbreviations Chl chlorophyll - CPa chlorophyll a-protein of PSII - CPl P-700 chlorophyll a-protein - CPD Chlorophyll packing density index - cyt f cytochrome f - FP free pigments - LHC light-harvesting complex - Pmax light saturated photosynthetic rates per chlorophyll - n number of experiments - PQ plastoquinone - PS photosystem - PSU photosynthetic unit - QE non-photochemical quenching - QQ photochemical quenching  相似文献   

18.
Two fractions of the light fragments enriched in the photosystem I (PSI) complexes were obtained from pea (Pisum sativum L.) thylakoids by digitonin treatment and subsequent differential centrifugation. The ratio of chlorophyll a to chlorophyll b, chlorophyll/P700 spectra of low-temperature fluorescence, and excitation spectra of long-wave fluorescence were measured. These characteristics were shown to be different due to variation in the size and composition of the light-harvesting antenna of PSI complexes present in the particles obtained. The larger antenna size of one of the fractions was related to the incorporation of the pool of light-harvesting complex II (LHCII). A comparison with the data available allowed us to identify these particles as fragments of intergranal thylakoids and end membranes of granal thylakoids. The suggestion that an increase in the PSI light-harvesting antenna in intergranal thylakoids is related to the attachment of phosphorylated LHCII is discussed.  相似文献   

19.
Leaves of Zea mays L. cv. LG11 were chilled for 6 h at 5 °Cin a high photon flux density. On return to 20 °C, the leavesshowed a 45% decrease in the apparent quantum yield of photosyntheticoxygen evolution. The effects of this chill-treatment on thechlorophyll fluorescence induction kinetics of the leaves indicateda 20–25% decrease in the primary photochemical quantumyield of photosystem II. The fluorescence emission spectra ofthese leaves demonstrated a marked modification in the distributionof excitation energy within the photochemical apparatus of thethylakoid membranes, such that photosystem I was excessivelyfavoured with respect to photosystem II. These chill-inducedchanges would result in an enhancement of cyclic over non-cyclicelectron transport and account for a decrease in the apparentquantum yield of photosynthetic oxygen evolution. Key words: Zea mays, Chilling, Photosynthesis, Thylakoids  相似文献   

20.
The effects of protein phosphorylation and cation depletion on the electron transport rate and fluorescence emission characteristics of photosystem I at two stages of chloroplast development in light-grown wheat leaves are examined. The light-harvesting chlorophyll a/b protein complex associated with photosystem I (LHC I) was absent from the thylakoids at the early stage of development, but that associated with photosystem II (LHC II) was present. Protein phosphorylation produced an increase in the light-limited rate of photosystem I electron transport at the early stage of development when chlorophyll b was preferentially excited, indicating that LHC I is not required for transfer of excitation energy from phosphorylated LHC II to the core complex of photosystem I. However, no enhancement of photosystem I fluorescence at 77 K was observed at this stage of development, demonstrating that a strict relationship between excitation energy density in photosystem I pigment matrices and the long-wavelength fluorescence emission from photosystem I at 77 K does not exist. Depletion of Mg2+ from the thylakoids produced a stimulation of photosystem I electron transport at both stages of development, but a large enhancement of the photosystem I fluorescence emission was observed only in the thylakoids containing LHC I. It is suggested that the enhancement of PS I electron transport by Mg2+-depletion and phosphorylation of LHC II is associated with an enhancement of fluorescence at 77 K from LHC I and not from the core complex of PS I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号