首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
固体废弃物处理与产氢技术   总被引:2,自引:0,他引:2  
氢气能作为一种清洁能源和工业上的原料所使用。目前国际上氢气的获得主要有化学制取和电解水制取两种方法, 但这些方法都需要耗费大量的能源, 特别是化学制取法在耗能的同时还极易对环境造成污染。相比之下, 生物制氢有着极大的优势, 它主要是通过微生物发酵或者光合微生物的作用, 将有机废弃物进行分解从而获得氢气。利用废弃物制氢即可以低廉的获得氢能源同时又能资源化利用废弃物。以下对固体废弃物的类型、产氢的方法等进行了综述。  相似文献   

2.
氢气能作为一种清洁能源和工业上的原料所使用。目前国际上氢气的获得主要有化学制取和电解水制取两种方法, 但这些方法都需要耗费大量的能源, 特别是化学制取法在耗能的同时还极易对环境造成污染。相比之下, 生物制氢有着极大的优势, 它主要是通过微生物发酵或者光合微生物的作用, 将有机废弃物进行分解从而获得氢气。利用废弃物制氢即可以低廉的获得氢能源同时又能资源化利用废弃物。以下对固体废弃物的类型、产氢的方法等进行了综述。  相似文献   

3.
氢气是一种清洁高效的可再生能源.该文比较分析了常用于氢气制取的方法,讨论了生物制氢的微生物种类以及发酵产氢的诸多影响因素,对目前生物制氢的研究进展进行了综述.  相似文献   

4.
生物产氢研究进展   总被引:20,自引:0,他引:20  
氢能是一种清洁高效的能源。氢气可以利用工农业废料通过微生物发酵制取 ,是一种可再生燃料。文中介绍了厌氧菌、兼性厌氧菌、好氧菌、光合细菌和蓝细菌等产氢的微生物种类 ,以及它们的产氢机理。从光合细菌利用废料产氢的效率和产氢设备的研究来看 ,无疑具有很大的潜力。以产氢技术作为下一代能源开发创新的技术已引起国际社会的重视 ,具有广阔的市场前景。  相似文献   

5.
亚心型四爿藻在CCCP作用下的光生物产氢的代谢途径   总被引:1,自引:0,他引:1  
以添加CCCP(羰基氰化物间氯苯腙,Carbonyl cyanide m-chlorophenylhydrazone)的海洋绿藻亚心型四爿藻光生物制氢为研究体系,使用作用于光合系统不同位点的抑制剂研究该藻产氢过程不同时段的代谢途径。结果表明:四爿藻光生物产氢前期电子主要来自PS Ⅱ光解水以及胞内分解代谢,电子经由光合电子传递链传递至氢酶产生氢气;而后期释放的氢气则是通过不依赖光合电子传递链的发酵途径产生。产氢过程厌氧发酵代谢途径主要产物是乙酸、乙醇,其中乙醇代谢途径和氢酶竞争NAD(P)H,不利于氢气的积累。  相似文献   

6.
该项目开发的乙醇型发酵生物制氢技术,实际上是一项生物发酵产氢和高浓度有机废水处理的集成技术,在治理废水污染的同时,制取了大量的清洁能源氢气。从废弃物资源化与综合利用的角度看,该技术符合我国废水循环利用和污染物资源化的迫切需求。  相似文献   

7.
微生物可以利用工业废弃物产生氢气,其产氢机理可以分成两种:光合产氢和发酵产氢。前者利用光能,后者利用代谢过程中产生的电子,分解有机物产氢。氢酶是产氢过程中的关键酶,催化氢的氧化或质子的还原。氢酶主要有[NiFe]氢酶和[Fe]氢酶两种,具有不同的结构,但催化机理是相似的。本文主要综述产氢微生物的种类、微生物产氢代谢途径和关键酶催化机理,并展望微生物产氢研究的发展方向。  相似文献   

8.
氢气具有广泛的生物学功能,近年来逐渐引起广泛关注。但是氢气发挥生物学作用的机理一直都有争论,制约了氢生物学的进一步发展。现在被广泛接受的是氢气选择性与毒性自由基反应的理论,但是生理条件下氢气与自由基直接反应的证据并不充分,多数属于间接证据,无法区分氢气是与自由基直接反应还是影响了自由基的产生。氢气具有抗氧化作用,本团队研究表明,氢气不是在自由基产生之后去清除,而是减少自由基的产生,类似于在自由基产生之初就关上“开关”;氢气可以提高包括线粒体复合物Ⅰ、乙酰胆碱酯酶、HRP在内的生物酶的活性,可以影响线粒体膜电位和调节神经细胞膜电位,细胞膜的氧化还原酶类及离子通道等都受到氢气的调节,这表明氢气的作用可能是多靶点的主要基于酶学反应的过程,高等生物具有产生和利用氢气的氢化酶活性。主要探讨了氢气和自由基的关系以及氢气作用的生物酶学基础,以期为揭示氢气发挥生物学作用的机理提供参考。  相似文献   

9.
大量动物实验和临床试验显示,氢气可能对疾病的预防或治疗有积极作用。尽管目前氢气的安全性已被广泛认可,但是长期氢气干预是否会对机体的生理功能产生影响还缺乏实验数据支持。为了探究长期饮用富氢水(hydrogen-rich water, HRW)对生理功能的影响,测试了长期饮用富氢水大鼠的体重、脏器重量、饮水进食及排泄量、心脏功能、血常规和血清生化指标。研究发现:富氢水对血常规/空腹血糖/肝功能无显著影响;富氢水能够显著提高大鼠血清甘油三酯水平(P<0.05),而胆固醇、胆汁酸和尿酸水平无显著变化;富氢水对大鼠心脏功能无显著影响;富氢水能够显著提高大鼠脑组织重量(P<0.05);富氢水对大鼠体重、其他脏器重量、饮食进水量和排泄量无显著影响。对富氢水干预后的长期影响效果的观察具有一定的基础研究价值和临床参考意义。  相似文献   

10.
氢气(hydrogen gas,H2)是新发现的生物气体信号分子。自2007年开始,有关H2的生理调控活性及信号转导功能受到广泛的关注,并逐步形成了研究氢气生物学效应和分子机理的一门新学科--氢气生物学。按照实际运用范围的不同,氢气生物学也可以划分为氢医学和氢农学。在医学方面,通过多种动物模型研究和部分临床试验,发现H2具有抗氧化、抗炎和抗凋亡的作用,而且H2对缺血/再灌注以及以炎症为基础的急性组织缺血性疾病和慢性退行性疾病(如帕金森病、阿尔茨海默病和动脉粥样硬化等氧化应激相关疾病)均具有较为理想的正面效果。在农学方面,相关报道还发现H2可以提高苜蓿、水稻和拟南芥对非生物胁迫的耐性,调控黄瓜、番茄、猕猴桃、芽苗菜、黑大麦和食用菌的生长发育和营养品质,延长洋桔梗、玫瑰和百合切花的保鲜以及提高家畜对病原微生物的抗性。本文首先探究了氢气生物学的发展历史,提出氢医学研究思路的源头是电解水,结合H2测定方法、内源H2的产生途径以及氢气生物学效应的分子机理和信号转导的研究成果,从给氢方式、生物学效应以及安全性等方面,介绍了氢医学和氢农学的现状,提出选择性抗氧化机制不能完全解释现有的氢生物学效应,反映相关分子机制的复杂性和多样性。最后,针对氢气生物学的若干重要的科学和实践问题进行了展望,并提出氢医学的进一步发展还依赖于大量且可信度高的临床试验,氢农业还需要完成多年多点的大规模大田实践。  相似文献   

11.
利用餐厨垃圾循环半连续厌氧发酵产氢研究   总被引:8,自引:0,他引:8  
利用餐厨垃圾采用半连续厌氧发酵进行产氢的研究。实验结果表明以高温(100℃)预处理15 min的厌氧活性污泥为种泥,在温度37℃,pH 6.0左右,较宽的稀释率(1.0~4.0 d-1)范围内,均能较好的实现厌氧发酵产氢。在稀释率D=2.4 d-1下,流出液中乙醇、乙酸、丙酸、丁酸和戊酸的质量分数分别为5.6%、29.6%、5.4%、58.5%和0.9%,产氢过程属于典型的丁酸型发酵,最终氢气的体积分数可达60%,氢气的产生速率为5.49 m3/(m3.d)。将厌氧发酵液相产物作为稀释液返回到反应器中,反应器的产氢能力大幅度的提高,当回流比R=0.8时,最大产氢速率可达10.9 m3/(m3.d),最终氢气的含量可达65%,厌氧发酵反应器的产氢能力提高了约130%。  相似文献   

12.
高浓度有机质驯化活性污泥对比产生氢率的影响   总被引:1,自引:0,他引:1  
利用驯化的活性污泥降解蔗糖制取氢气,设计了间歇浓度梯度驯化方案,驯化后不同来源活性污泥的糖代谢速率和产氢速率均有显著提高,使初始含糖量为76~84g/L(实际约6 6kgCOD/m3 ·d)培养液的比产氢率超过了含糖4 0g/L的低浓度培养液的比产氢率而无抑制现象。其中啤酒厂厌氧活性污泥、啤酒厂排污处污泥及南京城市排水沟污泥的蔗糖消耗率均达到85 %以上;比产氢率分别达2 2 4、2 35和2 14molH2 /mol蔗糖。揭示了高浓度有机质的活性污泥间歇浓度梯度驯化过程中糖代谢速率和产氢能力的演变规律,其适用于相当多的驯化活性活泥降解高浓度有机废液,以提高单位产氢能力。  相似文献   

13.
近年来,研究表明氢分子具有广泛的生物学效应,饮用富氢水(hydrogen-rich water,HRW)是其主要的摄取方法,但目前对于水相中氢气浓度检测方法的研究甚少。为了建立适用于测定水相中氢气浓度的检测方法,利用纯水氢气发生器制备饱和富氢水。然后,利用氢气微电极直接测定水相中的氢气浓度,结果表明,在不同氢气浓度范围内(0~1.620 0 mg·L-1和0~0.202 5 mg·L-1),氢气浓度与微电极信号值均呈现良好的线性关系,方法检出限(method detection limit,MDL)为4.3×10-3 mg·L-1。同时,采用顶空方式将水相中的氢气转移到气相中,通过气相色谱法测定氢气的浓度,结果表明,在不同氢气浓度范围内(0~1.620 0 mg·L-1和0~0.202 5 mg·L-1),氢气浓度与气相色谱峰面积均具有良好的线性关系,MDL为8.7×10-4 mg·L-1。研究结果表明,氢微电极法和气相色谱法均可用于水相中氢气浓度的精确定量,即成功建立了采用氢气微电极及顶空气相色谱测定水相中氢气含量的检测方法。  相似文献   

14.
自2007年发现吸氢可有效保护脑缺血再灌注损伤以来,氢气的生物学作用被陆续发现。富氢水或富氢生理盐水作为主要的氢气干预方式已广泛应用于基础医学和临床研究中,并且已被证实对多种疾病有很好的预防和治疗作用。以往关于富氢水或富氢生理盐水的研究多是针对其医学效应的介绍,通过介绍富氢水或富氢生理盐水干预后体内氢浓度的变化情况、对正常生理功能的影响、对疾病的保护作用以及对肠道菌群的影响,并对不同动物实验中富氢水或富氢生理盐水的氢气浓度、干预介入时间点、干预时长以及每次干预剂量进行阐述,以期为氢分子基础研究提供一定的理论依据。  相似文献   

15.
氢气是一种具有重要生物学功能的气体分子,可以用于神经退行性疾病、抑郁、睡眠障碍和毒瘾戒断症状等的治疗和改善,普遍认为和氢气的选择性抗氧化有关,但氢气对神经功能的调控机制尚不清楚。为了探究氢气对神经功能的调控机制,通过脑片膜片钳技术分别检测了氢瞬时作用大鼠大脑切片皮层神经细胞和饮用富氢水(8周)大鼠大脑切片皮层神经细胞的动作电位变化,以判断氢的干预是否能够影响神经兴奋的传导;利用液相色谱质谱联用仪(liquid chromatograph-mass spectrometer,LCMS)检测饮用富氢水(8周)大鼠大脑切片皮层神经递质的含量变化,以进一步探究氢气影响神经兴奋传导的具体机制。结果表明,氢气处理组与对照组相比大鼠皮层神经细胞的阈值电压、动作电位间隔和输入抗阻具有显著性差异(P<0.05),氢气处理组静息膜电位升高,神经细胞爆发动作电位阈值升高,表明氢气可能对神经细胞膜离子通道的开放和关闭有影响,氢处理能够使皮层神经细胞兴奋性明显降低。大鼠在连续饮用富氢水8周后大脑皮层同样显现出兴奋性降低趋势,经LCMS测定,发现神经递质的含量没有明显变化。研究提示,氢气可能是通过改变细胞内外电荷差异变化或者直接影响神经细胞表面钠、钾等离子通道的打开或关闭,从而实现对神经细胞兴奋性的调节。  相似文献   

16.
彭玉麟  史延茂   《微生物学通报》1992,19(4):203-206
分别在不同浓度pH7.0的磷酸缓冲液中培养Clostridium butyricum A69,随着磷酸盐缓冲液浓度的增高,培养过程中pH值下降减慢,放氢氢酶较长时间地维持在较高的酶活水平上。而吸氢氢酶活力基本保持不变,因而导致氢气产量有较大幅度的提高。在10mmol和70mmol磷酸盐缓冲液中,最终氢气产量几乎相差一倍,说明控制溶液的pH能大幅度地提高氢气产量。  相似文献   

17.
宁德刚  汤晓夏 《微生物学通报》2013,40(11):2083-2089
蓝藻是唯一能通过光合作用产生清洁可再生燃料氢气的原核微生物。一些蓝藻具有催化产氢活性的镍-铁Hox氢酶(双向氢酶), 由于其巨大的应用潜力受到广泛的关注。但Hox氢酶在蓝藻产氢过程中调控途径尚不清楚。本文对蓝藻Hox氢酶的结构、生态分布和表达调控的研究进展进行了总结。简单介绍了作者近来对模式蓝藻Synechocystis sp. PCC 6803 hox操纵子中两个未知功能基因ssl2420和sll1225的研究结果。  相似文献   

18.
【目的】利用海水养殖场有机废弃物厌氧发酵产氢,可在减少有机污染物的同时获取氢气。【方法】以海水养殖场有机废弃物为底物,比较嗜热酶(S-TE)、酸、碱、灭菌、微波不同预处理方法对厌氧发酵产氢效果的影响,并对发酵过程中底物性质变化[SCOD、可溶性蛋白质、可溶性糖、pH、VFAs(挥发性脂肪酸)和乙醇]进行探讨。【结果】灭菌预处理产氢效果最好,产氢率为22.0 mL/g VSS,酸处理的效果最差,产氢率为7.6 mL/g VSS。可溶性糖大量消耗之后,氢气不再产生。接种S-TE预处理污泥的底物能更多地释放营养物质,并在整个发酵过程中保持较为稳定的pH值。发酵过程中产生的VFAs主要成分是乙酸,在发酵后期出现乙醇。【结论】灭菌预处理是海水养殖场有机废弃物厌氧发酵产氢的最佳预处理方法,可溶性糖为这一过程主要的营养来源。  相似文献   

19.
光合细菌是水生的革兰氏阴性的微生物,广泛分布于海洋、河川、湖泊、小溪和水塘中。因它含有细菌叶绿素和类胡萝卜素等光合色素,因此可以利用光能通过光合作用而生长繁殖。光合细菌在进行光合作用的同时,还能够行使固氮功能。光合作用形成的高还原物质和高能量物质,除了供给固氮酶的固氮需要外,也用于支持固氮酶的产氢反应,氢气的吸收则由氢酶执行。大量的研究工作表明,通过捕获光能产生氢气,从而将太阳能转化为稳定的化学能,是光合细菌的一个普遍特征。  相似文献   

20.
氢气在能源领域的优势已日渐凸显,其在医学领域同样是一种清洁、高效、经济的治疗手段。氢医学领域主要包括氢气对疾病的基础研究和临床研究,如氢气的使用方法、剂量、对健康的促进作用、对疾病的治疗效果以及作用机理等。氢分子可以清除羟基自由基和过氧亚硝酸盐,对氧化应激和炎症相关疾病具有显著的治疗效果,同时其作为一种内源性气体,无毒无害,对人体不会造成不良反应。通过直接摄入和控制释放等方式,可以实现对脑和神经系统疾病、心血管疾病、糖尿病和癌症等疾病的靶向治疗。介绍了释放氢气的不同方式及其在医学领域的研究进展,并对氢医学的科学和实践问题进行了展望,以期为氢气在生物医学领域的应用研究提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号