首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Charuvi D  Kiss V  Nevo R  Shimoni E  Adam Z  Reich Z 《The Plant cell》2012,24(3):1143-1157
Chloroplasts of higher plants develop from proplastids, which are undifferentiated plastids that lack photosynthetic (thylakoid) membranes. In flowering plants, the proplastid-chloroplast transition takes place at the shoot apex, which consists of the shoot apical meristem (SAM) and the flanking leaf primordia. It has been believed that the SAM contains only proplastids and that these become chloroplasts only in the primordial leaves. Here, we show that plastids of the SAM are neither homogeneous nor necessarily null. Rather, their developmental state varies with the specific region and/or layer of the SAM in which they are found. Plastids throughout the L1 and L3 layers of the SAM possess fairly developed thylakoid networks. However, many of these plastids eventually lose their thylakoids during leaf maturation. By contrast, plastids at the central, stem cell-harboring region of the L2 layer of the SAM lack thylakoid membranes; these appear only at the periphery, near the leaf primordia. Thus, plastids in the SAM undergo distinct differentiation processes that, depending on their lineage and position, lead to either development or loss of thylakoid membranes. These processes continue along the course of leaf maturation.  相似文献   

2.
3.
Yu TS  Lue WL  Wang SM  Chen J 《Plant physiology》2000,123(1):319-326
We isolated pgi1-1, an Arabidopsis mutant with a decreased plastid phospho-glucose (Glc) isomerase activity. While pgi1-1 mutant has a deficiency in leaf starch synthesis, it accumulates starch in root cap cells. It has been shown that a plastid transporter for hexose phosphate transports cytosolic Glc-6-P into plastids and expresses restricted mainly to the heterotrophic tissues. The decreased starch content in leaves of the pgi1-1 mutant indicates that cytosolic Glc-6-P cannot be efficiently transported into chloroplasts to complement the mutant's deficiency in chloroplastic phospho-Glc isomerase activity for starch synthesis. We cloned the Arabidopsis PGI1 gene and showed that it encodes the plastid phospho-Glc isomerase. The pgi1-1 allele was found to have a single nucleotide substitution, causing a Ser to Phe transition. While the flowering times of the Arabidopsis starch-deficient mutants pgi1, pgm1, and adg1 were similar to that of the wild type under long-day conditions, it was significantly delayed under short-day conditions. The pleiotropic phenotype of late flowering conferred by these starch metabolic mutations suggests that carbohydrate metabolism plays an important role in floral initiation.  相似文献   

4.
The plastid chaperonin   总被引:3,自引:0,他引:3  
The discovery and properties of the plastid chaperonin are described. This chaperonin is implicated in the folding and assembly of the enzyme ribulose bisphosphate carboxylase-oxygenase and in the folding of proteins imported into plastids from the cytosol. The plastid chaperonin appears to be unique in that it contains two distinct types of 60 kDa polypeptide, whereas only a single subunit type has been reported for the bacterial and mitochondrial chaperonins. The plastid chaperonin polypeptides are encoded by nuclear genes which are subject to complex regulation.  相似文献   

5.
Recently, a novel family of methyltransferases was identified in plants. Some members of this newly discovered and recently characterized methyltransferase family catalyze the formation of small-molecule methyl esters using S-adenosyl-L-Met (SAM) as a methyl donor and carboxylic acid-bearing substrates as methyl acceptors. These enzymes include SAMT (SAM:salicylic acid carboxyl methyltransferase), BAMT (SAM:benzoic acid carboxyl methyltransferase), and JMT (SAM:jasmonic acid carboxyl methyltransferase). Moreover, other members of this family of plant methyltransferases have been found to catalyze the N-methylation of caffeine precursors. The 3.0-A crystal structure of Clarkia breweri SAMT in complex with the substrate salicylic acid and the demethylated product S-adenosyl-L-homocysteine reveals a protein structure that possesses a helical active site capping domain and a unique dimerization interface. In addition, the chemical determinants responsible for the selection of salicylic acid demonstrate the structural basis for facile variations of substrate selectivity among functionally characterized plant carboxyl-directed and nitrogen-directed methyltransferases and a growing set of related proteins that have yet to be examined biochemically. Using the three-dimensional structure of SAMT as a guide, we examined the substrate specificity of SAMT by site-directed mutagenesis and activity assays against 12 carboxyl-containing small molecules. Moreover, the utility of structural information for the functional characterization of this large family of plant methyltransferases was demonstrated by the discovery of an Arabidopsis methyltransferase that is specific for the carboxyl-bearing phytohormone indole-3-acetic acid.  相似文献   

6.
Despite much study of the role of S-adenosylmethionine (SAM) in the methylation of DNA, RNA, and proteins, and as a cofactor for a wide range of biosynthetic processes, little is known concerning the intracellular transport of this essential metabolite. Screening of the Arabidopsis (Arabidopsis thaliana) genome yielded two potential homologs of yeast (Saccharomyces cerevisiae) and human SAM transporters, designated as SAMC1 and SAMC2, both of which belong to the mitochondrial carrier protein family. The SAMC1 gene is broadly expressed at the organ level, although only in specialized tissues of roots with high rates of cell division, and appears to be up-regulated in response to wounding stress, whereas the SAMC2 gene is very poorly expressed in all organs/tissues analyzed. Direct transport assays with the recombinant and reconstituted SAMC1 were utilized to demonstrate that this protein displays a very narrow substrate specificity confined to SAM and its closest analogs. Further experiments revealed that SAMC1 was able to function in uniport and exchange reactions and characterized the transporter as highly active, but sensitive to physiologically relevant concentrations of S-adenosylhomocysteine, S-adenosylcysteine, and adenosylornithine. Green fluorescent protein-based cell biological analysis demonstrated targeting of SAMC1 to mitochondria. Previous proteomic analyses identified this protein also in the chloroplast inner envelope. In keeping with these results, bioinformatics predicted dual localization for SAMC1. These findings suggest that the provision of cytosolically synthesized SAM to mitochondria and possibly also to plastids is mediated by SAMC1 according to the relative demands for this metabolite in the organelles.  相似文献   

7.
The subcellular location of activity and protein of ADP-glucose pyrophosphorylase (AGPase) in developing tomato (Lycopersicon esculentum) fruit was determined following a report that the enzyme might be present inside and outside the plastids in this organ. Plastids prepared from crude homogenates of columella and pericarp, the starch-accumulating tissues of developing fruit, contained 8% to 18% of the total activity of enzymes known to be confined to plastids, and 0.2% to 0.5% of the total activity of enzymes known to be confined to the cytosol. The proportion of the total activity of AGPase in the plastids was the same as that of the enzymes known to be confined to the plastid. When samples of plastid and total homogenate fractions were subjected to immunoblotting with an antiserum raised to AGPase, most or all of the protein detected was plastidial. Taken as a whole, these data provide strong evidence that AGPase is confined to the plastids in developing tomato fruit.  相似文献   

8.
Cotton(Gossypium spp.) is one of the most important fiber crops worldwide. In the last two decades, transgenesis and genome editing have played important roles in cotton improvement. However,genotype dependence is one of the key bottlenecks in generating transgenic and gene-edited cotton plants through either particle bombardment or Agrobacterium-mediated transformation. Here, we developed a shoot apical meristem(SAM) cell-mediated transformation system(SAMT) that allowed the transformation of r...  相似文献   

9.
Stromules (stroma-filled tubules) are highly dynamic structures extending from the surface of all plastid types examined so far, including proplastids, chloroplasts, etioplasts, leucoplasts, amyloplasts, and chromoplasts. Stromules are usually 0.35-0.85 microm in diameter and of variable length, from short beak-like projections to linear or branched structures up to 220 mum long. They are enclosed by the inner and outer plastid envelope membranes and enable the transfer of molecules as large as Rubisco (approximately 560 kDa) between interconnected plastids. Stromules occur in all cell types, but stromule morphology and the proportion of plastids with stromules vary from tissue to tissue and at different stages of plant development. In general, stromules are more abundant in tissues containing non-green plastids, and in cells containing smaller plastids. The primary function of stromules is still unresolved, although the presence of stromules markedly increases the plastid surface area, potentially increasing transport to and from the cytosol. Other functions of stromules, such as transfer of macromolecules between plastids and starch granule formation in cereal endosperm, may be restricted to particular tissues and cell types.  相似文献   

10.
The HY1 locus of Arabidopsis is necessary for phytochrome chromophore biosynthesis and is defined by mutants that show a long hypocotyl phenotype when grown in the light. We describe here the molecular cloning of the HY1 gene by using chromosome walking and mutant complementation. The product of the HY1 gene shows significant similarity to animal heme oxygenases and contains a possible transit peptide for transport to plastids. Heme oxygenase activity was detected in the HY1 protein expressed in Escherichia coli. Heme oxygenase catalyzes the oxygenation of heme to biliverdin, an activity that is necessary for phytochrome chromophore biosynthesis. The predicted transit peptide is sufficient to transport the green fluorescent protein into chloroplasts. The accumulation of the HY1 protein in plastids was detected by using immunoblot analysis with an anti-HY1 antiserum. These results indicate that the Arabidopsis HY1 gene encodes a plastid heme oxygenase necessary for phytochrome chromophore biosynthesis.  相似文献   

11.
12.
The only animal cells known that can maintain functional plastids (kleptoplasts) in their cytosol occur in the digestive gland epithelia of sacoglossan slugs. Only a few species of the many hundred known can profit from kleptoplasty during starvation long-term, but why is not understood. The two sister taxa Elysia cornigera and Elysia timida sequester plastids from the same algal species, but with a very different outcome: while E. cornigera usually dies within the first two weeks when deprived of food, E. timida can survive for many months to come. Here we compare the responses of the two slugs to starvation, blocked photosynthesis and light stress. The two species respond differently, but in both starvation is the main denominator that alters global gene expression profiles. The kleptoplasts'' ability to fix CO2 decreases at a similar rate in both slugs during starvation, but only E. cornigera individuals die in the presence of functional kleptoplasts, concomitant with the accumulation of reactive oxygen species (ROS) in the digestive tract. We show that profiting from the acquisition of robust plastids, and key to E. timida''s longer survival, is determined by an increased starvation tolerance that keeps ROS levels at bay.  相似文献   

13.
Expression of bar in the plastid genome confers herbicide resistance   总被引:12,自引:0,他引:12  
Lutz KA  Knapp JE  Maliga P 《Plant physiology》2001,125(4):1585-1590
Phosphinothricin (PPT) is the active component of a family of environmentally safe, nonselective herbicides. Resistance to PPT in transgenic crops has been reported by nuclear expression of a bar transgene encoding phosphinothricin acetyltransferase, a detoxifying enzyme. We report here expression of a bacterial bar gene (b-bar1) in tobacco (Nicotiana tabacum cv Petit Havana) plastids that confers field-level tolerance to Liberty, an herbicide containing PPT. We also describe a second bacterial bar gene (b-bar2) and a codon-optimized synthetic bar (s-bar) gene with significantly elevated levels of expression in plastids (>7% of total soluble cellular protein). Although these genes are expressed at a high level, direct selection thus far did not yield transplastomic clones, indicating that subcellular localization rather than the absolute amount of the enzyme is critical for direct selection of transgenic clones. The codon-modified s-bar gene is poorly expressed in Escherichia coli, a common enteric bacterium, due to differences in codon use. We propose to use codon usage differences as a precautionary measure to prevent expression of marker genes in the unlikely event of horizontal gene transfer from plastids to bacteria. Localization of the bar gene in the plastid genome is an attractive alternative to incorporation in the nuclear genome since there is no transmission of plastid-encoded genes via pollen.  相似文献   

14.
We recently reported an 868-bp plastid DNA minicircle, NICE1, that formed during transformation in a transplastomic Nicotiana tabacum line. Shuttle plasmids containing NICEI sequences were maintained extrachromosomally in plastids and shown to undergo recombination with NICE1 sequences on the plastid genome. To prove the general utility of the shuttle plasmids, we tested whether plastid genes outside the NICE1 region could be rescued in Escherichia coli. The NICE1-based rescue plasmid, pNICER1, carries NICE1 sequences for maintenance in plastids, the CoIE1 ori for maintenance in E. coli and a spectinomcyin resistance gene (aadA) for selection in both systems. In addition, pNICERl carries a defective kanamycin resistance gene, kan*, to target the rescue of a functional kanamycin resistance gene, kan, from the recipient plastid genome. pNICERl was introduced into plastids where recombination could occur between the homologous kan/kan* sequences, and subsequently rescued in E. coli to recover the products of recombination. Based on the expression of kanamycin resistance in E. coli and the analysis of three restriction fragment polymorphisms, recombinant kan genes were recovered at a high frequency. Efficient rescue of kan from the plastid genome in E. coli indicates that NICE 1-based plasmids are suitable for rescuing mutations from any part of the plastid genome, expanding the repertoire of genetic tools available for plastid biology.  相似文献   

15.
The inheritance pattern of mutant white plastids was studied in W × W crosses, in which one mutant was highly stable (Ws) and the other unstable (Wu) owing to the spontaneous restitution (mutation) of white plastids to a new green form. Thirty-six selfs and crosses were made within and between three nuclear type I cultivars, transmitting the unstable plastids, and three nuclear type II cultivars, transmitting the stable plastids. The allelic frequencies of the restituted plastids among the progeny were subjected to an analysis of variance which showed that within each nuclear type the three cultivars were rather similar except for some heterogeneity after Ws × Wu plastid crosses. The relative average transmission of the two mutant plastids in these W × W crosses was estimated and compared with their individual transmission in reciprocal crosses in which one parent contained green plastids. In the latter crosses, the green plastids were superior to the mutant plastids and the unstable plastid mutant was only slightly more successful than the stable mutant. But when the mutant plastids competed against each other, the unstable mutant became greatly superior to the stable mutant and comparable to a green normal plastid. A model to explain these results is discussed.  相似文献   

16.
We have analyzed plastid proliferation in root cortical cells of Medicago truncatula colonized by arbuscular mycorrhizal (AM) fungi by concomitantly labeling fungal structures, root plastids, a protein involved in plastid division (FtsZ1) and a protein involved in the biosynthesis of AM-specific apocarotenoids. Antibodies directed against FtsZ1 have been generated after heterologous expression of the respective gene from M. truncatula and characterization of the gene product. Analysis of enzymatic activity and assembly experiments showed similar properties of this protein when compared with the bacterial proteins. Immunocytological experiments allowed two phases of fungal and plastid development to be clearly differentiated and plastid division to be monitored during these phases. In the early phase of arbuscule development, lens-shaped plastids, intermingled with the arbuscular branches, divide frequently. Arbuscule degradation, in contrast, is characterized by large, tubular plastids, decorated by a considerable number of FtsZ division rings.  相似文献   

17.
Plastids isolated from developing leaves and embryos of oilseed rape (Brassica napus L.) were incubated with substrates in the light or the dark, with or without exogenous ATP. Incorporation of HCO-3, and carbon from a range of substrates into fatty acids and/or starch by leaf chloroplasts was absolutely light-dependent and was unaffected by provision of ATP. Incorporation of HCO-3 into fatty acids and/or starch by embryo plastids was also light-dependent. However, the light-dependent rates attained, when expressed on a comparable basis, were less than 32% of those from Glc6P (plus ATP), which was the most effective substrate for starch and fatty acid synthesis. In the light alone the rates of carbon incorporation from Glc6P, pyruvate and acetate into fatty acids, and from Glc6P into starch by embryo plastids were less than 27% of the respective ATP-dependent (dark) rates. Light had no effect on these ATP-dependent rates of synthesis by embryo plastids. While transporter activities for both glucose and Glc6P were present in embryo plastids, leaf chloroplasts did not have the latter activity. It is concluded that light at in vivo levels can contribute energy to carbon metabolism in embryo plastids. However, this contribution is likely to be small and these plastids are therefore largely dependent upon interaction with the cytosol for the ATP, reducing power and carbon precursors that are required for maximal rates of starch and fatty acid synthesis.  相似文献   

18.
The dinoflagellates have repeatedly replaced their ancestral peridinin-plastid by plastids derived from a variety of algal lineages ranging from green algae to diatoms. Here, we have characterized the genome of a dinoflagellate plastid of tertiary origin in order to understand the evolutionary processes that have shaped the organelle since it was acquired as a symbiont cell. To address this, the genome of the haptophyte-derived plastid in Karlodinium veneficum was analyzed by Sanger sequencing of library clones and 454 pyrosequencing of plastid enriched DNA fractions. The sequences were assembled into a single contig of 143 kb, encoding 70 proteins, 3 rRNAs and a nearly full set of tRNAs. Comparative genomics revealed massive rearrangements and gene losses compared to the haptophyte plastid; only a small fraction of the gene clusters usually found in haptophytes as well as other types of plastids are present in K. veneficum. Despite the reduced number of genes, the K. veneficum plastid genome has retained a large size due to expanded intergenic regions. Some of the plastid genes are highly diverged and may be pseudogenes or subject to RNA editing. Gene losses and rearrangements are also features of the genomes of the peridinin-containing plastids, apicomplexa and Chromera, suggesting that the evolutionary processes that once shaped these plastids have occurred at multiple independent occasions over the history of the Alveolata.  相似文献   

19.
We recently reported an 868-bp plastid DNA minicircle, NICE1, that formed during transformation in a transplastomic Nicotiana tabacum line. Shuttle plasmids containing NICEI sequences were maintained extrachromosomally in plastids and shown to undergo recombination with NICE1 sequences on the plastid genome. To prove the general utility of the shuttle plasmids, we tested whether plastid genes outside the NICE1 region could be rescued in Escherichia coli. The NICE1-based rescue plasmid, pNICER1, carries NICE1 sequences for maintenance in plastids, the CoIE1 ori for maintenance in E. coli and a spectinomcyin resistance gene (aadA) for selection in both systems. In addition, pNICERl carries a defective kanamycin resistance gene, kan*, to target the rescue of a functional kanamycin resistance gene, kan, from the recipient plastid genome. pNICERl was introduced into plastids where recombination could occur between the homologous kan/kan* sequences, and subsequently rescued in E. coli to recover the products of recombination. Based on the expression of kanamycin resistance in E. coli and the analysis of three restriction fragment polymorphisms, recombinant kan genes were recovered at a high frequency. Efficient rescue of kan from the plastid genome in E. coli indicates that NICE 1-based plasmids are suitable for rescuing mutations from any part of the plastid genome, expanding the repertoire of genetic tools available for plastid biology.  相似文献   

20.
Witz S  Jung B  Fürst S  Möhlmann T 《The Plant cell》2012,24(4):1549-1559
Nucleotide de novo synthesis is highly conserved among organisms and represents an essential biochemical pathway. In plants, the two initial enzymatic reactions of de novo pyrimidine synthesis occur in the plastids. By use of green fluorescent protein fusions, clear support is provided for a localization of the remaining reactions in the cytosol and mitochondria. This implies that carbamoyl aspartate, an intermediate of this pathway, must be exported and precursors of pyrimidine salvage (i.e., nucleobases or nucleosides) are imported into plastids. A corresponding uracil transport activity could be measured in intact plastids isolated from cauliflower (Brassica oleracea) buds. PLUTO (for plastidic nucleobase transporter) was identified as a member of the Nucleobase:Cation-Symporter1 protein family from Arabidopsis thaliana, capable of transporting purine and pyrimidine nucleobases. A PLUTO green fluorescent protein fusion was shown to reside in the plastid envelope after expression in Arabidopsis protoplasts. Heterologous expression of PLUTO in an Escherichia coli mutant lacking the bacterial uracil permease uraA allowed a detailed biochemical characterization. PLUTO transports uracil, adenine, and guanine with apparent affinities of 16.4, 0.4, and 6.3 μM, respectively. Transport was markedly inhibited by low concentrations of a proton uncoupler, indicating that PLUTO functions as a proton-substrate symporter. Thus, a protein for the absolutely required import of pyrimidine nucleobases into plastids was identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号