首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purification of ribulose-1,5-bisphosphate carboxylase from primary leaves of Phaseolus vulgaris var. Red Kidney with ammonium sulfate precipitation, ion exchange chromatography, and gel filtration resulted in the complete loss of detectable oxygenase activity and the retention of a low velocity and a high K(m) form of both the carboxylase and oxygenase. The polyethylene glycol-6000-purified ribulose-1, 5-bisphosphate oxygenase displayed a broad pH optimum (7.9-9.4) and a high K(m) for O(2) and ribulose 1,5-bisphosphate (0.90 mm and 0.25 mm, respectively). Initiation of the oxygenase reaction with protein rather than ribulose 1,5-bisphosphate resulted in reduced activity. The enzymes prepared by the two purification procedures were electrophoretically different.Etiolated primary leaf tissue exhibited low rates of both carboxylase and oxygenase. Similar developmental kinetic activity was observed for both reactions during greening. Photosynthetic (14)CO(2) fixation was inhibited 95% by 100% N(2) gas during the first 24 hours of greening, but the inhibition was rapidly overcome by 48 to 72 hours of light exposure.  相似文献   

2.
Dai Z  Ku M  Edwards GE 《Plant physiology》1995,107(3):815-825
The effect of O2 on photosynthesis was determined in maize (Zea mays) leaves at different developmental stages. The optimum level of O2 for maximum photosynthetic rates was lower in young and senescing tissues (2-5 kPa) than in mature tissue (9 kPa). Inhibition of photosynthesis by suboptimal levels of O2 may be due to a requirement for functional mitochondria or to cyclic/pseudocyclic photophosphorylation in chloroplasts; inhibition by supraoptimal levels of O2 is considered to be due to photorespiration. Analysis of a range of developmental stages (along the leaf blade and at different leaf ages and positions) showed that the degree of inhibition of photosynthesis by supraoptimal levels of O2 increased rapidly once the ribulose-1,5-bisphosphate carboxylase/oxygenase and chlorophyll contents were below a critical level and was similar to that of C3 plants. Tissue having a high sensitivity of photosynthesis to O2 may be less effective in concentrating CO2 in the bundle sheath cells due either to limited function of the C4 cycle or to higher bundle sheath conductance to CO2. An analysis based on the kinetic properties of ribulose-1,5-bisphosphate carboxylase/oxygenase was used to predict the maximum CO2 level concentrated in bundle sheath cells at a given degree of inhibition of photosynthesis by supraoptimal levels of O2.  相似文献   

3.
The primary structure of ribulose-1,5-bisphosphate carboxylase/oxygenase from the marine diatom Cylindrotheca sp. strain N1 has been determined. Unlike higher plants and green algae, the genes encoding the large and the small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase are chloroplast-encoded and closely associated (Hwang and Tabita, 1989). The rbcL and rbcS genes in strain N1 are cotranscribed and are separated by an intergenic region of 46 nucleotide base pairs. Ribosome binding sites and a potential promoter sequence were highly homologous to previously determined chloroplast sequences. Comparison of the deduced primary structure of the diatom large and small subunits indicated significant homology to previously determined sequences from bacteria; there was much less homology to large and small subunits from cyanobacteria, green algae, and higher plants. Although high levels of recombinant diatom large subunits could be expressed in Escherichia coli, the protein synthesized was primarily insoluble and incapable of forming an active hexadecameric enzyme. Edman degradation studies indicated that the amino terminus of the large subunit isolated from strain N1 was blocked, suggesting that the mechanism responsible for processing and subsequent assembly of large and small subunits resembles the situation found with other eucaryotic ribulose-1,5-bisphosphate carboxylase/oxygenase proteins, despite the distinctive procaryotic gene arrangement and sequence homology.  相似文献   

4.
5.
We have examined the possible role of leaf cytosolic hexoses and the expression of mannitol metabolism as mechanisms that may affect the repression of photosynthetic capacity when plants are grown at 1000 versus 380 [mu]L L-1 CO2. In plants grown at high CO2, leaf ribulose-1,5-bisphosphate carboxylase/oxygenase content declined by [greater than or equal to]20% in tobacco (Nicotiana sylvestris) but was not affected in the mannitol-producing species snapdragon (Antirrhinum majus) and parsley (Petroselinum hortense). In the three species mesophyll glucose and fructose at midday occurred almost entirely in the vacuole (>99%), irrespective of growth CO2 levels. The estimated cytosolic concentrations of glucose and fructose were [less than or equal to]100 [mu]M. In the three species grown at high CO2, total leaf carbohydrates increased 60 to 100%, but mannitol metabolism did not function as an overflow mechanism for the increased accumulation of carbohydrate. In both snapdragon and parsley grown at ambient or high CO2, mannitol occurred in the chloroplast and cytosol at estimated midday concentrations of 0.1 M or more each. The compartmentation of leaf hexoses and the metabolism of alternate carbohydrates are further considered in relation to photosynthetic acclimation to high levels of CO2.  相似文献   

6.
Giordano M  Bowes G 《Plant physiology》1997,115(3):1049-1056
The halotolerant alga Dunaliella salina was cultured on 10 mM NH4+ or NO3- with air CO2 or 5% (v/v) CO2. Cells grown on NH4+ rather than NO3- were up to 17% larger in volume but had similar division rates. The photosynthetic K0.5 of dissolved inorganic C per cell was reduced, but the light- and CO2-saturated photosynthesis, dark respiration, and light-independent fixation rates were increased. The cells exhibited 2- to 5-fold greater activities of ribulose-1,5-bisphosphate carboxylase/oxygenase, phosphoenolpyruvate carboxylase and carboxykinase, and carbonic anhydrase and more soluble and ribulose-1,5-bisphosphate carboxylase/oxygenase protein. Chlorophyll and [beta]-carotene also increased by 30 to 70%. However, starch and glycerol decreased, indicating that C was reallocated from carbohydrates into protein and pigments by growth on NH4+. Algae cultured on air-CO2 rather than a high CO2 concentration were 44% smaller with 55 to 67% lower cell division rates and thus appeared C-limited, despite the operation of a CO2-concentrating mechanism. Cells cultured on air-CO2 had less protein and starch and 28% more glycerol, but the pigment content was unchanged. In only one growth regime was the cell glycerol concentration sufficient to maintain osmotic equilibrium with the external medium, indicating that an additional osmoticum was required. It appears that the N source, as well as the growth [CO2], substantially modifies photosynthetic and growth characteristics, light-independent C metabolism, and C-allocation patterns of D. salina cells.  相似文献   

7.
We have studied the turnover of an abundant chloroplast protein, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rbu-P2 carboxylase/oxygenase), in plants (Spirodela oligorrhiza and Triticum aestivum L.) and algae (Chlamydomonas reinhardtii and C. moewusii) induced to senesce under oxidative conditions. Rbu-P2 carboxylase/oxygenase activity and stability in vivo were found to be highly susceptible to oxidative stress, resulting in intermolecular cross-linking of large subunits by disulfide bonds within the holoenzyme, rapid and specific translocation of the soluble enzyme complex to the chloroplast membranes, and finally protein degradation. The redox state of Cys-247 in Rbu-P2 carboxylase/oxygenase large subunit seems involved in the sensitivity of the holoenzyme to oxidative inactivation and cross-linking. However, this process did not drive membrane attachment or degradation of Rbu-P2 carboxylase/oxygenase in vivo. Translocation of oxidized Rbu-P2 carboxylase/oxygenase to chloroplast membranes may be a necessary step in its turnover, particularly during leaf senescence. Thus, processes that regulate the redox state of plant cells seem closely intertwined with cellular switches shifting the leaf from growth and maturation to senescence and death.  相似文献   

8.
Seedlings of sweet orange (Citrus sinensis) were fertilized for 14 weeks with boron (B)-free or B-sufficient (2.5 or 10muM H(3)BO(3)) nutrient solution every other day. Boron deficiency resulted in an overall inhibition of plant growth, with a reduction in root, stem and leaf dry weight (DW). Boron-starved leaves showed decreased CO(2) assimilation and stomatal conductance, but increased intercellular CO(2) concentrations. Activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), NADP-glyceraldehyde-3-phosphate dehydrogenase (NADP-GAPDH) and stromal fructose-1,6-bisphosphatase (FBPase) were lower in B-deficient leaves than in controls. Contents of glucose, fructose and starch were increased in B-deficient leaves while sucrose was decreased. Boron-deficient leaves displayed higher or similar superoxide dismutase (SOD), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR) and glutathione reductase (GR) activities, while dehydroascorbate reductase (DHAR) and catalase (CAT) activities were lower. Expressed on a leaf area or protein basis, B-deficient leaves showed a higher ascorbate (AsA) concentration, but a similar AsA concentration on a DW basis. For reduced glutathione (GSH), we found a similar GSH concentration on a leaf area or protein basis and an even lower content on a DW basis. Superoxide anion (O(2)(-)) generation, malondialdehyde (MDA) concentration and electrolyte leakage were higher in B-deficient than in control leaves. In conclusion, CO(2) assimilation may be feedback-regulated by the excessive accumulation of starch and hexoses in B-deficient leaves via direct interference with chloroplast function and/or indirect repression of photosynthetic enzymes. Although B-deficient leaves remain high in activity of antioxidant enzymes, their antioxidant system as a whole does not provide sufficient protection from oxidative damage.  相似文献   

9.
At early stages of ontogeny (up to 50-60% of the maximum leaf area) of wheat (Triticum aestivum L.), meadow fescue (Festuca pratensis Huds.), reed fescue (F. arindinacea Schreb.), and sugar beet (Beta vulgaris L. var. saccharifera (Alef) Krass), there is correlation between changes in the specific leaf density (SLD), rate of photosynthetic CO2 assimilation; activity of the key photosynthetic enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39); and concentration of chlorophyll (Chl) a, Chl b, carotenoids, and soluble leaf proteins. However, there is no correlation of SLD with the activity of phospho(enol)pyruvate carboxylase (EC 4.1.1.31). Senescence of leaves was accompanied by a decrease in the SLD value. Treatment with cytokininomimetics (6-benzylaminopurine and Metribuzin) caused an increase in the SLD value. The specific leaf density is suggested to be a structural and functional characteristic of the photosynthetic apparatus of agricultural plants.  相似文献   

10.
The effect of salinity on C(4) photosynthesis was examined in leaves of maize, a NADP-malic enzyme (NADP-ME) type C(4) species. Potted plants with the fourth leaf blade fully developed were treated with 3% NaCl solution for 5d. Under salt treatment, the activities of pyruvate orthophosphate dikinase (PPDK), phosphoenolpyruvate carboxylase (PEPCase), NADP-dependent malate dehydrogenase (NADP-MDH) and NAD-dependent malate dehydrogenase (NAD-MDH), which are derived mainly from mesophyll cells, increased, whereas those of NADP-ME and ribulose-1,5-bisphosphate carboxylase, which are derived mainly from bundle sheath cells (BSCs), decreased. Immunocytochemical studies by electron microscopy revealed that PPDK protein increased, while the content of ribulose-1,5-bisphosphate carboxylase/oxygenase protein decreased under salinity. In salt-treated plants, the photosynthetic metabolites malate, pyruvate and starch decreased by 40, 89 and 81%, respectively. Gas-exchange analysis revealed that the net photosynthetic rate, the transpiration rate, stomatal conductance (g(s)) and the intercellular CO(2) concentration decreased strongly in salt-treated plants. The carbon isotope ratio (δ(13)C) in these plants was significantly lower than that in control. These findings suggest that the decrease in photosynthetic metabolites under salinity was induced by a reduction in gas-exchange. Moreover, in addition to the decrease in g(s), the decrease in enzyme activities in BSCs was responsible for the decline of C(4) photosynthesis. The increase of PPDK, PEPCase, NADP-MDH, and NAD-MDH activities and the decrease of NADP-ME activity are interpreted as adaptation responses to salinity.  相似文献   

11.
The susceptibility of the chloroplastic enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase to proteolysis by trypsin, chymotrypsin, proteinase K, and papain is enhanced by oxidative treatments including spontaneous oxidation of cysteines. Proteinases exhibit a high specificity for the oxidized inactive form of the carboxylase, cleaving its large subunit. Treatment of the inactive enzyme with dithiothreitol results in partial recovery of both carboxylase activity and resistance to proteolysis. This behavior may explain the specific degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase that occurs in vivo during leaf senescence.  相似文献   

12.
The response to drought was compared for willow plants of optimal leaf nitrogen content (100 N) and those of 86% of this content (86 N). Gas exchange measurements revealed that the carboxylation efficiency (CE) of photosynthesis was more sensitive to drought than the photosynthetic capacity in both N regimes. Since the leaf content of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was found to be much more resistant it is suggested that a decreased specific activity of Rubisco underlies the decreased CE. Although the rate of water consumption was the same for 86 N and 100 N plants the photosynthetic apparatus responded much more rapidly in the 86 N leaves. This increased sensitivity of 86 N leaves was not due to accelerated senescence as judged by comparison with parallel plants subjected to discontinued fertilization; the two categories of treatments resulted in the same loss of leaf nitrogen and Rubisco but drought induced a much more rapid photosynthetic depression. In contrast to the drought situation, 86 N and 100 N plants behaved similarly when compared under short term water stress. First, when single attached leaves were exposed to a sudden drop in air humidity the capacity of CO2 uptake in both N regimes decreased about 20% over 10 min while the leaf water potential remained high. Second, in freely transpiring leaf discs cut from 86 N and 100 N leaves the same relationship between capacity of O2 evolution and extent of dehydration was observed. The possible mechanisms underlying the increased susceptibility of 86 N leaves to drought is discussed; the water status of the roots not the leaves is suggested to be the determining factor.Abbreviations CE carboxylation efficiency - 100 N optimal nitrogen regime - 86 N suboptimal nitrogen regime with 86% of the optimal leaf nitrogen content, Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase  相似文献   

13.
Rao IM  Terry N 《Plant physiology》1989,90(3):814-819
Sugar beets (Beta vulgaris L. cv F58-554H1) were cultured hydroponically for 2 weeks in growth chambers with two levels of orthophosphate (Pi) supplied in half strength Hoagland solution. Low-P plants were supplied with 1/20th of the Pi supplied to control plants. With low-P treatment, the acid soluble leaf phosphate and total leaf P decreased by about 88%. Low-P treatment had a much greater effect on leaf area than on photosynthesis. Low-P decreased total leaf area by 76%, dry weight per plant by 60%, and the rate of photosynthesis per area at light saturation by 35%. Low-P treatment significantly decreased the total extractable activity of phosphoglycerate kinase (by 18%) and NADP-glyceraldehyde-3-phosphate dehydrogenase (by 16%), but did not decrease the total activities of ribulose-1,5-bisphosphate (RuBP) carboxylase (RuBPCase) and ribulose-5-phosphate kinase. Low-P treatment decreased the initial activities of three rate-limiting Calvin cycle enzymes, but had no effect on the initial activity of RuBPCase. Furthermore, low-P treatment significantly increased the total extractable activities of fructose-1,6-bisphosphatase (by 61%), fructose-1,6-bisphosphate aldolase (by 53%), and transketolase (by 46%). The results suggest that low-P treatment affected photosynthetic rate through an effect on RuBP regeneration rather than through RuBPCase activity and that the changes in Calvin cycle enzymes with low-P resulted in an increased flow of carbon to starch.  相似文献   

14.
Rice (Oryza sativa L.) plants with decreased ribulose-1,5-bisphosphate carboxylase (Rubisco) were obtained by transformation with the rice rbcS antisense gene under the control of the rice rbcS promoter. The primary transformants were screened for the Rubisco to leaf N ratio, and the transformant with 65% wild-type Rubisco was selected as a plant set with optimal Rubisco content at saturating CO2 partial pressures for photosynthesis under conditions of high irradiance and 25[deg]C. This optimal Rubisco content was estimated from the amounts and kinetic constants of Rubisco and the gas-exchange data. The R1 selfed progeny of the selected transformant were grown hydroponically with different N concentrations. Rubisco content in the R1 population was distributed into two groups: 56 plants had about 65% wild-type Rubisco, whereas 23 plants were very similar to the wild type. Although the plants with decreased Rubisco showed 20% lower rates of light-saturated photosynthesis in normal air (36 Pa CO2), they had 5 to 15% higher rates of photosynthesis in elevated partial pressures of CO2, (100-115 Pa CO2) than the wild-type plants for a given leaf N content. We conclude that the rice plants with 65% wild-type Rubisco show a higher N-use efficiency of photosynthesis under conditions of saturating CO2 and high irradiance.  相似文献   

15.
Long-term exposure of plants to elevated partial pressures of CO2 (pCO2) often depresses photosynthetic capacity. The mechanistic basis for this photosynthetic acclimation may involve accumulation of carbohydrate and may be promoted by nutrient limitation. However, our current knowledge is inadequate for making reliable predictions concerning the onset and extent of acclimation. Many studies have sought to investigate the effects of N supply but the methodologies used generally do not allow separation of the direct effects of limited N availability from those caused by a N dilution effect due to accelerated growth at elevated pCO2. To dissociate these interactions, wheat (Triticum aestivum L.) was grown hydroponically and N was added in direct proportion to plant growth. Photosynthesis did not acclimate to elevated pCO2 even when growth was restricted by a low-N relative addition rate. Ribulose-1, 5-bisphosphate carboxylase/oxygenase activity and quantity were maintained, there was no evidence for triose phosphate limitation of photosynthesis, and tissue N content remained within the range recorded for healthy wheat plants. In contrast, wheat grown in sand culture with N supplied at a fixed concentration suffered photosynthetic acclimation at elevated pCO2 in a low-N treatment. This was accompanied by a significant reduction in the quantity of active ribulose-1, 5-bisphosphate carboxylase/oxygenase and leaf N content.  相似文献   

16.
When Ribulose- 1,5-bisphosphate carboxylase/oxygenase was purified from spinach leaves (Spinacia oleracea) using precipitation with polyethylene glycol and MgCl2 followed by DEAE cellulose chromatography, 75% of phosphoribulokinase and 7% of phosphoriboisomerase activities copurified with ribulose- 1,5-bisphosphate carboxylase/oxygenase. This enzyme preparation showed ribose-5-phosphate and ribulose-5-phosphate dependent carboxylase and oxygenase activities which were nearly equivalent to its corresponding ribulose- 1,5-bisphosphate dependent activity. The ribose-5-phosphate and ribulose-5-phosphate dependent reaction rates were stable and linear for much longer time periods than the ribulose- 1,5-bisphosphate dependent rates. When sucrose gradients were used to purify ribulose- 1,5-bisphosphate carboxylase/oxygenase from crude stromal extracts, phosphoribulokinase was found to cosediment with ribulose- 1,5-bisphosphate carboxylase. Under these conditions most of the phosphoriboisomerase activity remained with the slower sedimenting proteins. Ammonium sulfate precipitation resulted in separation of the ribulose- 1,5-bisphosphate carboxylase peak from phosphoribulokinase peak. Crude extracts of peas Pisum sativum and spinach contained 0.725 to 0.730 milligram of phosphoribulokinase per milligram of chlorophyll, respectively, based on an enzyme-linked immunosorbent assay.  相似文献   

17.
Nakano H  Makino A  Mae T 《Plant physiology》1997,115(1):191-198
The effects of growth CO2 levels on the photosynthetic rates; the amounts of ribulose-1,5-bisphosphate carboxylase (Rubisco), chlorophyll (Chl), and cytochrome f; sucrose phosphate synthase activity; and total N content were examined in young, fully expanded leaves of rice (Oryza sativa L.). The plants were grown hydroponically under two CO2 partial pressures of 36 and 100 Pa at three N concentrations. The light-saturated photosynthesis at 36 Pa CO2 was lower in the plants grown in 100 Pa CO2 than those grown in 36 Pa CO2. Similarly, the amounts of Rubisco, Chl, and total N were decreased in the leaves of the plants grown in 100 Pa CO2. However, regression analysis showed no differences between the two CO2 treatments in the relationship between photosynthesis and total N or in the relationship between Rubisco and Chl and total N. Although a relative decrease in Rubisco to cytochrome f or sucrose phosphate synthase was found in the plants grown in 100 Pa CO2, this was the result of a decrease in total N content by CO2 enrichment. The activation state of Rubisco was also unaffected by growth CO2 levels. Thus, decreases in the photosynthetic capacity of the plants grown in 100 Pa CO2 could be simply accounted for by a decrease in the absolute amount of leaf N.  相似文献   

18.
Laisk A  Loreto F 《Plant physiology》1996,110(3):903-912
Using simultaneous measurements of leaf gas exchange and chlorophyll fluorescence, we determined the excitation partitioning to photosystem II (PSII), the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase, the dark respiration in the light, and the alternative electron transport rate to acceptors other than bisphosphoglycerate, and the transport resistance for CO2 in the mesophyll cells for individual leaves of herbaceous and tree species. The specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase for CO2 was determined from the slope of the O2 dependence of the CO2 compensation point between 1.5 and 21% O2. Its value, on the basis of dissolved CO2 and O2 concentrations at 25.5[deg]C, varied between 86 and 89. Dark respiration in the light, estimated from the difference between the CO2 compensation point and the CO2 photocompensation point, was about 20 to 50% of the respiration rate in the dark. The excitation distribution to PSII was estimated from the extrapolation of the dependence of the PSII quantum yield on F/Fm to F = 0, where F is steady-state and Fm is pulse-satuarated fluorescence, and varied between 0.45 and 0.6. The alternative electron transport rate was found as the difference between the electron transport rates calculated from fluorescence and from gas exchange, and at low CO2 concentrations and 10 to 21% O2, it was 25 to 30% of the maximum electron transport. The calculated mesophyll diffusion resistance accounted for about 20 to 30% of the total mesophyll resistance, which also includes carboxylation resistance. Whole-leaf photosynthesis is limited by gas phase, mesophyll diffusion, and carboxylation resistances in nearly the same proportion in both herbaceous species and trees.  相似文献   

19.
While exposure of C3 plants to elevated [CO2] would be expected to reduce production of reactive oxygen species (ROS) in leaves because of reduced photorespiratory metabolism, results obtained in the present study suggest that exposure of plants to elevated [CO2] can result in increased oxidative stress. First, in Arabidopsis and soybean, leaf protein carbonylation, a marker of oxidative stress, was often increased when plants were exposed to elevated [CO2]. In soybean, increased carbonyl content was often associated with loss of leaf chlorophyll and reduced enhancement of leaf photosynthetic rate (Pn) by elevated [CO2]. Second, two-dimensional (2-DE) difference gel electrophoresis (DIGE) analysis of proteins extracted from leaves of soybean plants grown at elevated [CO2] or [O3] revealed that both treatments altered the abundance of a similar subset of proteins, consistent with the idea that both conditions may involve an oxidative stress. The 2-DE analysis of leaf proteins was facilitated by a novel and simple procedure to remove ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from soluble soybean leaf extracts. Collectively, these findings add a new dimension to our understanding of global change biology and raise the possibility that oxidative signals can be an unexpected component of plant response to elevated [CO2].  相似文献   

20.
Summary Activated carboxylase activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), as well as photosynthetic rates were measured for 42 species of freshwater and marine macrophytes. While the carboxylase activity varied greatly among the species investigated (0.2–12.5 mol CO2 mg–1 chlorophyll min–1), the submersed freshwater plants showed significantly lower activities than emergent, floating leaved or secondary submersed forms. The variability in photosynthetic rates correlated with the carboxylase activity only for the marine macroalgae, and their photosynthesis to carboxylase activity ratios were close to 1. These plants also had a consistently high inorganic carbon transport capability, and it is suggested that ribulose-1,5-bisphosphate carboxylase/oxygenase activity is an important internal factor regulating the photosynthetic capacity within this plant group where, apparently, the internal CO2 concentration is high and photorespiration is suppressed. Among the freshwater forms, it appears that their much lower inorganic carbon transport ability, rather than their carboxylase activity, limits the photosynthetic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号