首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Second harmonic generation (SHG) was used to study both the adsorption of malachite green (MG), a positively charged organic dye, onto liposomes of different lipid compositions, and the transport kinetics of MG across the liposome bilayer in real time. We found that the dye adsorption increased linearly with the fraction of negatively charged lipids in the bilayer. Similarly, the transport rate constant for crossing the bilayer increased linearly with the fraction of charged lipid in the bilayer.  相似文献   

2.
In this work, molecular dynamics (MD) simulations with atomistic details were performed to examine the influence of the cholesterol on the interactions and the partitioning of the hydrophobic drug ibuprofen in a fully hydrated 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayer. Analysis of MD simulations indicated that ibuprofen molecules prefer to be located in the hydrophobic acyl chain region of DMPC/cholesterol bilayers. This distribution decreases the lateral motion of lipid molecules. The presence of ibuprofen molecules in the bilayers with 0 and 25 mol% cholesterol increases the ordering of hydrocarbon tails of lipids whereas for the bilayers with 50 mol% cholesterol, ibuprofen molecules perturb the flexible chains of DMPC lipids which leads to the reduction of the acyl chain order parameter. The potential of the mean force (PMF) method was used to calculate the free energy profile for the transferring of an ibuprofen molecule from the bulk water into the DMPC/cholesterol membranes. The PMF studies indicated that the presence of 50 mol% cholesterol in the bilayers increases the free energy barrier and slows down the permeation of the ibuprofen drug across the DMPC bilayer. This can be due to the condensing and ordering effects of the cholesterol on the bilayer.  相似文献   

3.
We have investigated interaction of alkyphospholipid (APL) liposomes consisting of 1,1-dimethylpiperidin-1-ium-4-yl) octadecyl phosphate (OPP) and different concentrations of cholesterol (CH) with human MT-3 breast-cancer cells using electron paramagnetic resonance method (EPR) with advanced characterization of EPR spectra of spin labeled liposome membranes. After incubation of OPP liposomes with MT-3 cells, a reduction of liposome entrapped, water soluble spin-probe tempocholine (ASL) was observed, indicating that ASL is released from liposomes and is reduced by oxy-redoxy systems inside the cells. This process is fast if cholesterol content in the bilayer was 29 or 45 mol%, whereas at 56 mol% cholesterol the process is almost stopped. The rate of spin-probe reduction in first 10 min after incubation with cells is even faster as for the free ASL, indicating that liposomes with low amount of cholesterol accelerate penetration of ASL into the cells. A faster release of hydrophilic material from liposomes with low cholesterol content coincides with the presence of domains with highly disordered alkyl chain motion that disappears at 50 mol% of cholesterol. We propose that these highly fluid domains are responsible for interaction of OPP liposomes with cells and fast release of the entrapped material into the cells. These results suggest that micelles are not the only reason for cytotoxic effect of OPP liposome formulations, as it was suggested before. OPP in liposomes, containing 45 mol% cholesterol or less, also contributes to the cytotoxic effect, due to their fast interaction with breast-cancer cells.  相似文献   

4.
We studied the interaction of Aspirin (acetylsalicylic acid) with lipid membranes using x-ray diffraction for bilayers containing up to 50 mol% of aspirin. From 2D x-ray intensity maps that cover large areas of reciprocal space we determined the position of the ASA molecules in the phospholipid bilayers and the molecular arrangement of the molecules in the plane of the membranes. We present direct experimental evidence that ASA molecules participate in saturated lipid bilayers of DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) and preferably reside in the head group region of the membrane. Up to 50 mol% ASA molecules can be dissolved in this type of bilayer before the lateral membrane organization is disturbed and the membranes are found to form an ordered, 2D crystal-like structure. Furthermore, ASA and cholesterol were found to co-exist in saturated lipid bilayers, with the ASA molecules residing in the head group region and the cholesterol molecules participating in the hydrophobic membrane core.  相似文献   

5.
DD K is an antimicrobial peptide previously isolated from the skin of the amphibian Phyllomedusa distincta. The effect of cholesterol on synthetic DD K binding to egg lecithin liposomes was investigated by intrinsic fluorescence of tryptophan residue, measurements of kinetics of 5(6)-carboxyfluorescein (CF) leakage, dynamic light scattering and isothermal titration microcalorimetry. An 8 nm blue shift of tryptophan maximum emission fluorescence was observed when DD K was in the presence of lecithin liposomes compared to the value observed for liposomes containing 43 mol% cholesterol. The rate and the extent of CF release were also significantly reduced by the presence of cholesterol. Dynamic light scattering showed that lecithin liposome size increase from 115 to 140 nm when titrated with DD K but addition of cholesterol reduces the liposome size increments. Isothermal titration microcalorimetry studies showed that DD K binding both to liposomes containing cholesterol as to liposomes devoid of it is more entropically than enthalpically favored. Nevertheless, the peptide concentration necessary to furnish an adjustable titration curve is much higher for liposomes containing cholesterol at 43 mol% (2 mmol L(-1)) than in its absence (93 micromol L(-1)). Apparent binding constant values were 2160 and 10,000 L mol(-1), respectively. The whole data indicate that DD K binding to phosphatidylcholine liposomes is significantly affected by cholesterol, which contributes to explain the low hemolytic activity of the peptide.  相似文献   

6.
Molecular shape and its impact on bilayer curvature stress are powerful concepts for describing the effects of lipids and fatty acids on fundamental membrane properties, such as passive permeability and derived properties like drug transport across liposomal membranes. We illustrate these relationships by studying the effects of fatty acids and lysolipids on the permeation of a potent anti-cancer drug, doxorubicin, across the bilayer of a liposome in which the drug is encapsulated. Using a simple fluorescence assay, we have systematically studied the passive permeation of doxorubicin across liposomal membranes in different lipid phases: the solid-ordered phase (DPPC bilayers), the liquid-disordered phase (POPC lipid bilayers), and the liquid-ordered phase induced by high levels of cholesterol (DOPC + cholesterol lipid bilayers). The effect of different free fatty acids (FA) and lysolipids (LL), separately and in combination, on permeability was assessed to elucidate the possible mechanism of phospholipase A2-triggered release in cancer tissue of liposomal doxorubicin formulations. In all cases, FAs applied separately lead to significant enhancement of permeability, most pronounced in liquid-disordered bilayers and less pronounced in solid and solid-ordered bilayers. LLs applied separately had only a marginal effect on permeability. FA and LL applied in combination lead to a synergistic enhancement of permeability in solid bilayers, whereas in liquid-disordered bilayers, the combined effect suppressed the otherwise strong permeability enhancement due to the FAs.  相似文献   

7.
The rate of reaction of the ascorbate ion with the nitroxide group of spin probes intercalated in lipid bilayers has been studied to examine the mechanism of transport of solutes across membranes. The loss of electron spin resonance (ESR) signal follows first-order kinetics. For a given bilayer system, the half-time of the process increases with the distance of the reacting group from the aqueous interface, according to an approximately linear permeation profile. The dependence on phospholipid headgroup is that which would be predicted from the net charge; addition of negatively charged headgroups increases the half-time of reaction, and positively charged headgroups decrease it, compared with bilayers having no net charge. Addition of cholesterol, which is known to decrease the fluidity of the hydrocarbon core of the bilayer, is found to increase the half-time of reaction. The results have been analyzed in terms of a partition-diffusion mechanism. It is suggested that the rate-limiting step for partitioning the solute into the bilayer might be removal of water of hydration. Cholesterol increases the activation energy, most probably by increasing the height of the barriers to diffusion. Quantitation of the changes in reaction rates gives an estimate of the change in bilayer surface potential on changing the headgroup composition. Examination of the permeation profile supports a diffusive mechanism, from which it can be estimated that the diffusion coefficient is approximately halved on adding 35 mol% cholesterol to egg lecithin bilayers.  相似文献   

8.
The influence of cholesterol and β-sitosterol on egg yolk phosphatidylcholine (EYPC) bilayers is compared. Different interactions of these sterols with EYPC bilayers were observed using X-ray diffraction. Cholesterol was miscible with EYPC in the studied concentration range (0-50 mol%), but crystallization of β-sitosterol in EYPC bilayers was observed at X ≥ 41 mol% as detected by X-ray diffraction. Moreover, the repeat distance (d) of the lamellar phase was similar upon addition of the two sterols up to mole fraction 17%, while for X ≥ 17 mol% it became higher in the presence of β-sitosterol compared to cholesterol. SANS data on suspensions of unilamellar vesicles showed that both cholesterol and β-sitosterol similarly increase the EYPC bilayer thickness. Cholesterol in amounts above 33 mol% decreased the interlamellar water layer thickness, probably due to "stiffening" of the bilayer. This effect was not manifested by β-sitosterol, in particular due to the lower solubility of β-sitosterol in EYPC bilayers. Applying the formalism of partial molecular areas, it is shown that the condensing effect of both sterols on the EYPC area at the lipid-water interface is small, if any. The parameters of ESR spectra of spin labels localized in different regions of the EYPC bilayer did not reveal any differences between the effects of cholesterol and β-sitosterol in the range of full miscibility.  相似文献   

9.
Oxidation of unsaturated membrane phospholipids by oxidative stress is associated with inflammation, infection, numerous diseases and neurodegenerative disorders. Lipid oxidation is observed in experimental samples when the parent lipid is exposed to oxidative stressors. The effect of phospholipid oxidation on the properties of biological membranes are still being explored, while low concentrations (0.1–2.0?mol%) of oxidised phospholipids are associated with disease states [1]. Previous computational studies have focused on the effect of high concentrations (~50?mol%) of oxidised phospholipids on binary lipid bilayers. This work systematically characterises the effect of lower concentrations (~10?mol%) of two oxidised lipid species, PoxnoPC (1-palmitoyl-2-(9′-oxo-nonanoyl)-sn-glycero-3-phosphocholine) or PazePC (1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine), on POPC/cholesterol and pure POPC bilayers. During μs atomistic simulations in pure POPC bilayers, PoxnoPC and PazePC reoriented their oxidised sn-2 acyl chains towards the solution, and PazePC adopted an extended conformation. The addition of 20?mol% cholesterol not only modulated the fluidity of the bilayers; it also modulated the flexibility of the PoxnoPC oxidised sn-2 tail, reducing bilayer disorder. In contrast, the addition of cholesterol had little effect on bilayers containing PazePC. Our studies show that the effect of oxidised lipids on the biophysical properties of a multicomponent bilayer cannot be intuitively extrapolated from a binary lipid system.  相似文献   

10.
Hung WC  Lee MT  Chen FY  Huang HW 《Biophysical journal》2007,92(11):3960-3967
The condensing effect of cholesterol on phospholipid bilayers was systematically investigated for saturated and unsaturated chains, as a function of cholesterol concentration. X-ray lamellar diffraction was used to measure the phosphate-to-phosphate distances, PtP, across the bilayers. The measured PtP increases nonlinearly with the cholesterol concentration until it reaches a maximum. With further increase of cholesterol concentration, the PtP remains at the maximum level until the cholesterol content reaches the solubility limit. The data in all cases can be quantitatively explained with a simple model that cholesterol forms complexes with phospholipids in the bilayers. The phospholipid molecules complexed with cholesterol are lengthened and this lengthening effect extends into the uncomplexed phospholipids surrounding the cholesterol complexes. This long-range thickening effect is similar to the effect of gramicidin on the thickness of lipid bilayers due to hydrophobic matching.  相似文献   

11.
Molecular dynamics (MD) computer simulations of five different hydrated unsaturated phosphatidylcholine lipid bilayers built up by 18:0/18:1(n-9)cis PC, 18:0/18:2(n-6)cis PC, 18:0/18:3(n-3)cis PC, 18:0/20:4(n-6)cis PC, and 18:0/22:6(n-3)cis PC molecules with 40 mol% cholesterol, and the same five pure phosphatidylcholine bilayers have been performed at 303 K. The simulation box of a lipid bilayer contained 96 phosphatidylcholines, 64 cholesterols, and 3840 water molecules (48 phosphatidylcholine molecules and 32 cholesterols per layer and 24 water molecules per phospholipid or cholesterol in each case). The lateral self-diffusion coefficients of the lipids in these systems and mass density profiles with respect to the bilayer normal have been analyzed. It has been found that the lateral diffusion coefficients of phosphatidylcholine molecules increase with increasing number of double bonds in one of the lipid chains, both in pure bilayers and in bilayers with cholesterol. It has been found as well that the lateral diffusion coefficient of phosphatidylcholine molecules of a lipid bilayer with 40 mol% cholesterol is smaller than that for the corresponding pure phosphatidylcholine bilayer.  相似文献   

12.
The effect of cholesterol in a liposomal Muc1 vaccine   总被引:1,自引:0,他引:1  
A liposomal Muc1 mucin vaccine for treatment of adenocarcinomas was formulated by incorporating a synthetic Muc1 mucin-based lipopeptide and Lipid A into a DPPC/cholesterol bilayer. Vaccination of mice with the liposomal formulation produced a peptide-specific immune response dependent on the cholesterol content. The response occurred at a threshold of 20-23 mol% cholesterol, and was optimal at cholesterol levels of > or =30 mol%. To understand this cholesterol dependency, we studied the effect of cholesterol on the liposomal bilayer and surface properties. Freeze-fracture electron microscopy showed a unique surface texture that was codependent upon cholesterol (> or =20 mol%) and lipopeptide content. Fluorescence anisotropy measurements exhibited a significant decrease in the rotational motion of 1,6-diphenyl-1,3,5-hexatriene in formulations containing >20 mol% cholesterol and only in the presence of the lipopeptide. At 20 mol% cholesterol and with lipopeptide, DSC showed a significant increase in the main phase transition of the DPPC bilayers, while Raman spectroscopy indicated a more ordered arrangement of DPPC molecules compared to control liposomes containing DPPC/cholesterol alone. Taken together, the data suggest the presence of lipopeptide-rich microdomains at and above a threshold of 20 mol% cholesterol that may play a role in the induction of a peptide-specific immunological response.  相似文献   

13.
Sclareol (labd-14-ene-8,13-diol) is a highly water-insoluble molecule that belongs to the labdane type diterpenes and is characterized as a biologically active molecule, due to its cytotoxic and cytostatic effects against human leukemic cell lines. A superimposition study between sclareol and cholesterol, based on their corresponding hydrophobic and polar molecular segments calculated from their lipophilic profiles, revealed their spatial similarities. This structural similarity between the two molecules prompted us to compare their effects on the structure and stability of phospholipid dipalmitoylphosphatidylcholine (DPPC) membranes. Differential scanning calorimetry (DSC) was applied to compare the thermal changes caused by either cholesterol or sclareol when are incorporated in DPPC bilayers. The results showed that sclareol is incorporated into phospholipid model membranes and mimics the thermal effects of cholesterol especially at concentrations up to X(sclareol)=9.1 mol%. These effects can be summarized as the abolition of pre-transition, lowering of the main phase transition and reduction of the enthalpy change (DeltaH) of the gel to liquid-crystalline phase transition of DPPC bilayers. At concentrations X> or =16.7 mol%, sclareol and cholesterol caused different heterogeneity in lipid bilayers or a reversible transition from a vesicular suspension to an extended peak bilayer network. This different fluidization, exerted by the two molecules at high concentration, may be related to their different stability and the z-average mean diameter of the liposomes they form. Small unilamellar vesicles, prepared by the thin film hydration method showed that DPPC bilayers containing a high concentration of sclareol in equimolar ratio sclareol:cholesterol were unstable, in contrast to the ones containing only cholesterol.  相似文献   

14.
Effect of triorganotin compounds on membrane permeability   总被引:1,自引:0,他引:1  
Organotin compounds are widely distributed toxicants. They are membrane-active molecules with broad biological toxicity. In this contribution, we study the effect of triorganotin compounds on membrane permeability using phospholipid model membranes and human erythrocytes. Tribultyltin and triphenyltin are able to induce the release of entrapped carboxyfluorescein from large unilamellar vesicles. The rate of release is similar for phosphatidylcholine and phosphatidylserine systems and the presence of equimolar cholesterol decreases the rate of the process. Release of carboxyfluorescein is almost abolished when a non-diffusible anion like gluconate is present in the external medium, and it is restored by addition of chloride. Tributyltin is able to cause hemolysis of human erythrocytes in a dose-dependent manner. Relative kinetics determination shows that potassium leakage occurs simultaneously with hemoglobin release. Hemolysis is reduced when erythrocytes are suspended in a gluconate medium. These results indicate that triorganotin compounds are able to transport organic anions like carboxyfluorescein across phospholipids bilayers by exchange diffusion with chloride and suggest that anion exchange through erythrocyte membrane could be related to the process of hemolysis.  相似文献   

15.
Although small, 100-nm liposomes are known to selectively accumulate in solid tumors, the individual contributions of liposome influx and egress rates are not well understood. The aim of this work was to determine influx and efflux kinetics for 100-nm, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)/cholesterol (Chol) liposomes by inducing aggregate formation of biotinylated liposomes upon administering avidin. Injecting 50 microg of neutravidin intravenously to mice that had previously been administered 100 mg/kg DPSC/Chol liposomes containing 0.5 mol% biotin-conjugated lipid resulted in >90% elimination of the liposomes from plasma within 1 h. This rapid removal by the reticuloendothelial system (RES) permitted the determination of the tumor efflux kinetics due to negligible tumor influx after neutravidin injection. The tumor efflux rate constant (k(-1)) was determined to be 0.041 h(-1) when neutravidin was injected 4 h after liposome injection. This allowed the determination of the tumor influx rate constant (k(1)), which under these conditions was 0.022 h(-1). Therefore, DSPC/Chol liposomal accumulation, in LS180 solid tumors, is dictated primarily by plasma liposome concentrations and liposome egress is comparable or slightly faster than influx into the tumors. This method is applicable for a wide range of lipid doses, and can be used to characterize influx and efflux parameters at different time points after accumulation. The application, therefore, has the potential to be used to fully characterize the impact of different liposome parameters such as lipid composition, steric stabilization, size and dose on tumor accumulation kinetics.  相似文献   

16.
In this study, the effect of aging, in terms of hydrolytic decomposition of the bilayer forming (phospho)lipids, on the physical stability of aqueous liposome dispersion was investigated in partially hydrogenated egg phosphatidylcholine (PHEPC) and egg phosphatidylglycerol (EPG) containing liposomes with or without cholesterol. The physical stability of the liposome dispersions was assessed by measuring the leak-in rate of a non-bilayer interacting hydrophilic marker molecule, calcein and changes in the particle size and its distribution in time. Additionally, permeability of either partially hydrolysed phospholipids or exogenous lyso-phosphatidylcholine(LPC) containing bilayers was calculated. The experiments were performed at 40 degrees C. Liposome dispersions were aged artificially by storing at 60 degrees C. The size of the liposomes and polydispersity index of the dispersions, in general, did not change significantly. The leak-in rate of calcein in externally added LPC containing liposomes was increased relative to the incorporated LPC concentration. The higher the LPC content of the bilayers, the higher the leak-in rate of calcein into liposomes. The leak-in rate of calcein, however, decreased first in partially hydrolysed phospholipids containing liposomes up to around 10% of hydrolysis and, afterwards, it started to increase. The leak-in rate was always lower in partially hydrolysed phospholipids containing liposomes than externally added LPC containing ones. Furthermore, the permeability of cholesterol containing bilayers was also always lower than the bilayers without cholesterol. In conclusion, addition of LPC into liposomal bilayers increases the permeability of bilayer. However, bilayers containing the hydrolysis products of phospholipids, both lyso-phospholipids and free fatty acids, did not show any enhanced permeability up to around 15% hydrolysis. Bilayer permeability is enhanced above 15% hydrolysis.  相似文献   

17.
When nicotinic acetylcholine receptors are reconstituted into lipid bilayers lacking cholesterol, agonists no longer stimulate cation flux. The kinetics of this process are difficult to study because variations in vesicle morphology cause errors in flux measurements. We developed a new stopped-flow fluorescence assay to study activation independently of vesicle morphology. When receptors were rapidly mixed with agonist plus ethidium, the earliest fluorescence increase reported the fraction of channels that opened and their apparent rate of fast desensitization. These processes were absent when the receptor was reconstituted into dioleoylphosphatidylcholine or into a mixture of that lipid with dioleoylphosphatidic acid (12 mol%), even though a fluorescent agonist reported that resting-state receptors were still present. The agonist-induced channel opening probability increased with bilayer cholesterol, with a midpoint value of 9 +/- 1.7 mol% and a Hill coefficient of 1.9 +/- 0.69, reaching a plateau above 20-30 mol% cholesterol that was equal to the native value. On the other hand, the observed fast desensitization rate was comparable to that for native membranes from the lowest cholesterol concentration examined (5 mol%). Thus the ability to reach the open state after activation varies with the cholesterol concentration in the bilayer, whereas the rate of the open state to fast desensitized state transition is unaffected. The structural basis for this is unknown, but an interesting corollary is that the channels of newly synthesized receptors are not fully primed by cholesterol until they are inserted into the plasma membrane--a novel form of posttranslational processing.  相似文献   

18.
The solubilization of cholesteryl oleate in sonicated phosphatidylcholine vesicles containing between 0 and 50 mol% cholesterol was studied by 13C-NMR using isotopically enriched [carbonyl-13C]cholesteryl oleate. The carbonyl-13C chemical shift from cholesteryl oleate in the phospholipid/cholesterol bilayer was significantly downfield from that for cholesteryl oleate in an oil phase and the peak area, relative to that of the phospholipid carbonyl, was used to determine bilayer solubility of the ester. The solubility (with respect to phospholipid) in the phospholipid bilayer without cholesterol (2.9 mol%) was only moderately reduced (to 2.3 mol%) at cholesterol levels up to 33 mol% but showed a more marked reduction to 1.4 mol% at 40 mol% cholesterol or 1.2 mol% at 50 mol% cholesterol. Since the vesicles containing 50 mol% cholesterol were larger (520 +/- 152 A diameter) than those with no cholesterol (291 +/- 97 A diameter), we measured the solubility of cholesteryl oleate in large vesicles with no cholesterol, prepared by extrusion through polycarbonate membrane filters, and found it similar to that in small, sonicated vesicles with no cholesterol. Therefore, the larger size of vesicles was not the factor responsible for the decreased cholesteryl oleate solubility at high cholesterol contents. A more direct effect of cholesterol is envisioned where the ester becomes displaced to deeper regions of the bilayer.  相似文献   

19.
N-Acyl phosphatidylethanolamines are negatively charged phospholipids, which are naturally occurring albeit at low abundance. In this study, we have examined how the amide-linked acyl chain affected the membrane behavior of the N-acyl-1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine (N-acyl-POPE) or N-acyl-dipalmitoyl-sn-glycero-3-phosphatidylethanolamine (N-acyl-DPPE), and how the molecules interacted with cholesterol. The gel-->liquid crystalline transition temperature of sonicated N-acyl phosphatidylethanolamine vesicles in water correlated positively with the number of palmitic acyl chains in the molecules. Based on diphenylhexatriene steady state anisotropy measurements, the presence of 33 mol% cholesterol in the membranes removed the phase transition from N-oleoyl-POPE bilayers, but failed to completely remove it from N-palmitoyl-DPPE and N-palmitoyl-POPE bilayers, suggesting rather weak interaction of cholesterol with the N-saturated NAPEs. The rate of cholesterol desorption from mixed monolayers containing N-palmitoyl-DPPE and cholesterol (1:1 molar ratio) was much higher compared to cholesterol/DPPE binary monolayers, suggesting a weak cholesterol interaction with N-palmitoyl-DPPE also in monolayers. In bilayer membranes, both N-palmitoyl-POPE and N-palmitoyl-DPPE failed to form sterol-rich domains, and in fact appeared to displace sterol from sterol/N-palmitoyl-sphingomyelin domains. The present data provide new information about the effects of saturated NAPEs on the lateral distribution of cholesterol in NAPE-containing membranes. These findings may be of relevance to neural cells which accumulate NAPEs during stress and cell injury.  相似文献   

20.
To investigate the effect of cholesterol composition on the binding of factor VIII (FVIII) and annexin V (AV) to membranes, liposomal membranes with phospholipid bilayers of various compositions of phosphatidylcholine (PC), phosphatidylserine (PS), and cholesterol were constructed. A surface plasmon resonance (SPR) biosensor system was employed to measure the equilibrium and rate constants of the bindings. As expected, PS was found to play a dominant role in the binding of AV; its binding level was directly proportional to the PS composition in a liposome. The binding levels of FVIII and AV to liposome increased with an increase in cholesterol composition in liposome. It seemed to suggest that cholesterol in liposome acts as a ‘phospholipid arrangement’ factor by inducing the formation of PS-rich microdomains. However, in the absence of PS (20% on a mole basis), cholesterol could not exert the binding enhancement effect, which again confirmed the critical role of PS in the bindings. Stability of the AV binding was significantly improved by the increase in cholesterol content; for AV, the dissociation rate constant was decreased approximately fivefold, from 1.7 × 10?3 s?1 in the absence of cholesterol to 3.3 × 10?4 s?1 in the presence of only 10% cholesterol. But, for FVIII the binding stability was not so much influenced by the cholesterol addition (up to 50% on a mole basis). In summary, by using liposomes on an SPR system, we were able to demonstrate quantitatively the apparent effects of cholesterol on the binding affinity and stability of the membrane-binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号