首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intracellular Salmonella inhibit antigen presentation by dendritic cells   总被引:3,自引:0,他引:3  
Dendritic cells (DC) are important APCs linking innate and adaptive immunity. During analysis of the intracellular activities of Salmonella enterica in DC, we observed that viable bacteria suppress Ag-dependent T cell proliferation. This effect was dependent on the induction of inducible NO synthase by DC and on the function of virulence genes in Salmonella pathogenicity island 2 (SPI2). Intracellular activities of Salmonella did not affect the viability, Ag uptake, or maturation of DC, but resulted in reduced presentation of antigenic peptides by MHC class II molecules. Increased resistance to reinfection was observed after vaccination of mice with SPI2-deficient Salmonella compared with mice vaccinated with SPI2-proficient Salmonella, and this correlated with an increased amount of CD4(+) as well as CD8(+) T cells. Our study is the first example of interference of an intracellular bacterial pathogen with Ag presentation by DC. The subversion of DC functions is a novel strategy deployed by this pathogen to escape immune defense, colonize host organs, and persist in the infected host.  相似文献   

2.
Memory T cells are critical for the control of intracellular pathogens and require few signals for maintenance; however, erosion of established preexisting memory CD8(+) T cells has been shown to occur during infection with heterologous viral infections. We evaluated whether this also occurs during infection with various intracellular bacteria and what mechanisms may be involved. We demonstrate that erosion of established memory is also induced during infection of mice with various intracellular bacteria, such as Listeria monocytogenes, Salmonella typhimurium, and Mycobacterium bovis (bacillus Calmette-Guérin). The extent of erosion of established CD8(+) T cell memory was dependent on the virulence of the heterologous pathogen, not persistence. Furthermore, when antibiotics were used to comprehensively eliminate the heterologous pathogen, the numbers of memory CD8(+) T cells were not restored, indicating that erosion of preexisting memory CD8(+) T cells was irreversible. Irrespective of the initial numbers of memory CD8(+) T cells, challenge with the heterologous pathogen resulted in a similar extent of erosion of memory CD8(+) T cells, suggesting that cellular competition was not responsible for erosion. After challenge with the heterologous pathogen, effector memory CD8(+) T cells were rapidly eliminated. More importantly, erosion of preexisting memory CD8(+) T cells was abrogated in the absence of IFN-gamma. These studies help reveal the paradoxical role of IFN-gamma. Although IFN-gamma promotes the control of intracellular bacterial replication during primary infection, this comes at the expense of erosion of preexisting memory CD8(+) T cells in the wake of infection with heterologous pathogens.  相似文献   

3.
Intracellular activities of Salmonella enterica in murine dendritic cells   总被引:4,自引:2,他引:2  
Dendritic cells (DC) efficiently phagocytose invading bacteria, but fail to kill intracellular pathogens such as Salmonella enterica serovar Typhimurium (S. Typhimurium). We analysed the intracellular fate of Salmonella in murine bone marrow-derived DC (BM-DC). The intracellular proliferation and subcellular localization were investigated for wild-type S. Typhimurium and mutants deficient in Salmonella pathogenicity island 2 (SPI2), a complex virulence factor that is essential for systemic infections in the murine model and intracellular survival and replication in macrophages. Using a segregative plasmid to monitor intracellular cell division, we observed that, in BM-DC, S. Typhimurium represents a static, non-dividing population. In BM-DC, S. Typhimurium resides in a membrane-bound compartment that has acquired late endosomal markers. However, these bacteria respond to intracellular stimuli, because induction of SPI2 genes was observed. S. Typhimurium within DC are also able to translocate a virulence protein into their host cells. SPI2 function was not required for intracellular survival in DC, but we observed that the maturation of the Salmonella-containing vesicle is different in DC infected with wild-type bacteria and a strain deficient in SPI2. Our observations indicate that S. Typhimurium in DC are able to modify normal processes of their host cells.  相似文献   

4.
5.
Salmonella are intracellular bacterial pathogens that reside and replicate inside macrophages, and attenuated strains of Salmonella typhimurium can be used to deliver heterologous Ags for MHC class I and/or MHC class II-restricted presentation. Recently, it was shown that invasion of macrophages by S. typhimurium may result in the death of host macrophages via a mechanism harboring features of apoptotic and necrotic cell death. However, it is unknown whether this bacterial-induced host cell death affects immunity. In addition, it has been hypothesized that macrophage death following infection with S. typhimurium and subsequent uptake of apoptotic cells by APC are fundamental to the induction of CTL responses. In this study we investigated the in vivo induction of Ag-specific CD8+ T lymphocyte responses and compared CD8+ T lymphocyte responses elicited with S. typhimurium strains carrying a mutation in their invA gene, and therefore an inability to induce Salmonella pathogenicity island 1 (SPI-1)-mediated macrophage death, with responses elicited by an attenuated deltaaroAD strain. Ag-specific CD8+ T lymphocyte responses were analyzed using IFN-gamma ELISPOT, tetramer binding, and in vivo and in vitro CTL assays. Our results showed that deltaaroAD and deltaaroADdeltainvA induced comparable levels of Ag-specific CD8+ T lymphocyte responses as well as protective, Ag-specific B and CD4+ T lymphocyte immunity. Furthermore, experiments in macrophage-depleted mice showed that CD8+ T lymphocyte responses were effectively induced in the absence of macrophages. Together, our results imply that in this infection model, SPI-1-mediated cell death does not affect the immunological defense response and is not important for the induction of CD8+ T lymphocyte responses.  相似文献   

6.
Toll-like receptors (TLRs) contribute to host resistance to microbial pathogens and can drive the evolution of virulence mechanisms. We have examined the relationship between host resistance and pathogen virulence using mice with a functional allele of the nramp-1 gene and lacking combinations of TLRs. Mice deficient in both TLR2 and TLR4 were highly susceptible to the intracellular bacterial pathogen Salmonella typhimurium, consistent with reduced innate immune function. However, mice lacking additional TLRs involved in S. typhimurium recognition were less susceptible to infection. In these TLR-deficient cells, bacteria failed to upregulate Salmonella pathogenicity island 2 (SPI-2) genes and did not form a replicative compartment. We demonstrate that TLR signaling enhances the rate of acidification of the Salmonella-containing phagosome, and inhibition of this acidification prevents SPI-2 induction. Our results indicate that S. typhimurium requires cues from the innate immune system to regulate virulence genes necessary for intracellular survival, growth, and systemic infection.  相似文献   

7.
Intestinal epithelial cells are an important site of the host's interaction with enteroinvasive bacteria. Genes in the chromosomally encoded Salmonella pathogenicity island 2 (SPI 2) that encodes a type III secretion system and genes on the virulence plasmid pSDL2 of Salmonella enteritica serovar Dublin (spv genes) are thought to be important for Salmonella dublin survival in host cells. We hypothesized that genes in those loci may be important also for prolonged Salmonella growth and the induction of apoptosis induced by Salmonella in human intestinal epithelial cells. HT-29 human intestinal epithelial cells were infected with wild-type S. dublin or isogenic mutants deficient in the expression of spv genes or with SPI 2 locus mutations. Neither the spv nor the SPI 2 mutations affected bacterial entry into epithelial cells or intracellular proliferation of Salmonella during the initial 8 h after infection. However, at later periods, bacteria with mutations in the SPI 2 locus or in the spv locus compared to wild-type bacteria, manifested a marked decrease in intracellular proliferation and a different distribution pattern of bacteria within infected cells. Epithelial cell apoptosis was markedly increased in response to infection with wild-type, but not the mutant Salmonella. However, apoptosis of epithelial cells infected with wild-type S. dublin was delayed for approximately 28 h after bacterial entry. Apoptosis was preceded by caspase 3 activation, which was also delayed for approximately 24 h after infection. Despite its late onset, the cellular commitment to apoptosis was determined in the early period after infection as inhibition of bacterial protein synthesis during the first 6 h after epithelial cell infection with wild-type S. dublin, but not at later times, inhibited the induction of apoptosis. These studies indicate that genes in the SPI 2 and the spv loci are crucial for prolonged bacterial growth in intestinal epithelial cells. In addition to their influence on intracellular proliferation of Salmonella, genes in those loci determine the ultimate fate of infected epithelial cells with respect to caspase 3 activation and undergoing death by apoptosis.  相似文献   

8.
The Hha/YmoA family of nucleoid-associated proteins is involved in gene regulation in enterobacteria. In Salmonella enterica serovar Typhimurium, virulence genes required for intracellular growth are induced following host cell invasion but the proteins responsible for repressing these genes prior to host cell entry have not been fully identified. We demonstrate here that Hha is the major repressor responsible for silencing virulence genes carried in Salmonella pathogenicity island 2 prior to bacteria sensing an intracellular environmental cue.  相似文献   

9.
The importance of the site of Ag localization within microbial pathogens for the effective generation of CD8+ T cells has been studied extensively, generally supporting the view that Ag secretion within infected target cells is required for optimal MHC class I-restricted Ag presentation. In contrast, relatively little is known about the importance of pathogen Ag localization for the activation of MHC class II-restricted CD4+ T cells, despite their clear importance for host protection. We have used the N-terminal targeting sequence of Leishmania major hydrophilic acylated surface protein B to generate stable transgenic lines expressing physiologically relevant levels of full-length OVA on the surface of metacyclic promastigotes and amastigotes. In addition, we have mutated the hydrophilic acylated surface protein B N-terminal acylation sequence to generate control transgenic lines in which OVA expression is restricted to the parasite cytosol. In vitro, splenic dendritic cells are able to present membrane-localized, but not cytosolic, OVA to OVA-specific DO.11 T cells. Strikingly and unexpectedly, surface localization of OVA is also a strict requirement for recognition by OVA-specific T cells (DO.11 and OT-II) and for the development of OVA-specific Ab responses in vivo. However, recognition of cytosolic OVA could be observed with increasing doses of infection. These data suggest that, even under in vivo conditions, where varied pathways of Ag processing are likely to operate, the site of Leishmania Ag localization is an important determinant of immunogenicity and hence an important factor when considering the likely candidacy of vaccine Ags for inducing CD4+ T cell-dependent immunity.  相似文献   

10.
Edwardsiella ictaluri is the leading cause of mortality in channel catfish culture, but little is known about its pathogenesis. The use of signature-tagged mutagenesis in a waterborne infection model resulted in the identification of 50 mutants that were unable to infect/survive in catfish. Nineteen had minitransposon insertions in miscellaneous genes in the chromosome, 10 were in genes that matched to hypothetical proteins, and 13 were in genes that had no significant matches in the NCBI databases. Eight insertions were in genes encoding proteins associated with virulence in other pathogens, including three in genes involved in lipopolysaccharide biosynthesis, three in genes involved in type III secretion systems (TTSS), and two in genes involved in urease activity. With the use of a sequence from a lambda clone carrying several TTSS genes, Blastn analysis of the partially completed E. ictaluri genome identified a 26,135-bp pathogenicity island containing 33 genes of a TTSS with similarity to the Salmonella pathogenicity island 2 class of TTSS. The characterization of a TTSS apparatus mutant indicated that it retained its ability to invade catfish cell lines and macrophages but was defective in intracellular replication. The mutant also invaded catfish tissues in numbers equal to those of invading wild-type E. ictaluri bacteria but replicated poorly and was slowly cleared from the tissues, while the wild type increased in number.  相似文献   

11.
The outcome of Salmonella infection in the mammalian host favors whoever succeeds best in disturbing the equilibrium between coordinate expression of bacterial (virulence) genes and host defense mechanisms. Intracellular persistence in host cells is critical for pathogenesis and disease, because Salmonella typhimurium strains defective in this property are avirulent. We examined whether similar host defense mechanisms are required for growth control of two S. typhimurium mutant strains. Salmonella pathogenicity island 2 (SPI2) and virulence plasmid-cured Salmonella mutants display similar virulence phenotypes in immunocompetent mice, yet their gene loci participate in independent virulence strategies. We determined the role of TNF-alpha and IFN-gamma as well as different T cell populations in infection with these Salmonella strains. After systemic infection, IFN-gamma was essential for growth restriction of plasmid-cured S. typhimurium, while SPI2 mutant infections were controlled in the absence of IFN-gamma. TNFRp55-deficiency restored systemic virulence to both Salmonella mutants. After oral inoculation, control of plasmid-cured bacteria substantially relied on both IFN-gamma and TNF-alpha signaling while control of SPI2 mutants did not. However, for both mutants, ultimate clearance of bacteria from infected mice depended on alphabeta T cells.  相似文献   

12.
Salmonella enterica serovar Typhi (S. Typhi), the aetiologic agent of typhoid fever, is a human restricted pathogen. The molecular mechanism of Salmonella pathogenicity is complex. The investigations of the molecular mechanisms of Salmonella virulence factors have shown that pathogenic Salmonella spp. are distinguished from their non-pathogenic relatives by the presence of specific pathogenicity genes, often organized in so-called pathogenicity islands (PIs). The type III secretion system (T3SS) proteins encoded by two Salmonella PIs (SPIs) are associated with the pathogenicity at molecular level. The identification of T3SS has provided new insight into the molecular factors and mechanisms underlying bacterial pathogenesis. The T3SS encoded by SPI-1 contains invasion genes; while SPI-2 is responsible for intracellular pathogenesis and has a crucial role for systemic S. enterica infections. These studies reveal a complex set of pathogenic interferences between intracellular Salmonella and its host cells. The understanding of the mechanisms by which Salmonella evade the host defense system and establish pathogenesis will be important for proper disease management.  相似文献   

13.
14.
Clearance of facultative intracellular pathogens such as Salmonella requires IFN-gamma from CD4 T cells. Mechanisms linking intracellular pathogen recognition with induction of IFN-gamma-producing T cells are still poorly understood. We show in this study that IL-12 is not required for commitment to the IFN-gamma-producing T cell response in infection with Salmonella typhimurium, but is needed for its maintenance. The IL-12-independent signals required for commitment depend on events during the first hour of infection and are related to Ag presentation. Even transient attenuation of Ag presentation early during infection specifically abrogates the IFN-gamma component of the resulting CD4 T cell response. The IL-12 needed for maintenance is also better induced by live rather than dead bacteria in vivo, and this difference is due to specific suppression of IL-12 induction by dead bacteria. Presence of exogenous IL-4 down-modulates IL-12 production by macrophages activated in vitro. Furthermore, macrophages from IL-4-null mice secrete high levels of both IL-12 and IL-18 in response to stimulation in vivo even with dead bacteria, but this does not lead to induction of IFN-gamma-secreting T cells in response to immunization with dead S. typhimurium. Early IL-4 is contributed by triggering of CD4 NK T cells by dead, but not live, bacteria. Thus, Ag presentation-related IL-12-independent events and IL-4-sensitive IL-12-dependent events play crucial complementary roles in the generation of the IFN-gamma-committed CD4 T cell component of the immune response in Salmonella infection.  相似文献   

15.
16.
Ag presentation to CD8(+) T cells often commences immediately after infection, which facilitates their rapid expansion and control of infection. Subsequently, the primed cells undergo rapid contraction. We report that this paradigm is not followed during infection with virulent Salmonella enterica, serovar Typhimurium (ST), an intracellular bacterium that replicates within phagosomes of infected cells. Although susceptible mice die rapidly (approximately 7 days), resistant mice (129 x 1SvJ) harbor a chronic infection lasting approximately 60-90 days. Using rOVA-expressing ST (ST-OVA), we show that T cell priming is considerably delayed in the resistant mice. CD8(+) T cells that are induced during ST-OVA infection undergo delayed expansion, which peaks around day 21, and is followed by protracted contraction. Initially, ST-OVA induces a small population of cycling central phenotype (CD62L(high)IL-7Ralpha(high)CD44(high)) CD8(+) T cells. However, by day 14-21, majority of the primed CD8(+) T cells display an effector phenotype (CD62L(low)IL-7Ralpha(low)CD44(high)). Subsequently, a progressive increase in the numbers of effector memory phenotype cells (CD62L(low)IL-7Ralpha(high)CD44(high)) occurs. This differentiation program remained unchanged after accelerated removal of the pathogen with antibiotics, as majority of the primed cells displayed an effector memory phenotype even at 6 mo postinfection. Despite the chronic infection, CD8(+) T cells induced by ST-OVA were functional as they exhibited killing ability and cytokine production. Importantly, even memory CD8(+) T cells failed to undergo rapid expansion in response to ST-OVA infection, suggesting a delay in T cell priming during infection with virulent ST-OVA. Thus, phagosomal lifestyle may allow escape from host CD8(+) T cell recognition, conferring a survival advantage to the pathogen.  相似文献   

17.
Owing to its unique intracellular biology that allows it to gain access to the host cell cytosol, Listeria monocytogenes induces potent, protective CD8 responses. The study of these responses has served as a paradigm to understand cell-mediated immunity to microbial pathogens. The availability of mutants specifically defective in unique aspects of the intracellular biology of this pathogen has greatly aided these studies. During the past few years, progress has been made to understand the contribution of the innate immune system and CD4 T cells in the generation of robust, long lasting CD8 responses to L. monocytogenes.  相似文献   

18.
Inflammasome signaling results in cell death and release of cytokines from the IL-1 family, which facilitates control over an infection. However, some pathogens such as Salmonella typhimurium (ST) activate various innate immune signaling pathways, including inflammasomes, yet evade these cell death mechanisms, resulting in a chronic infection. Here we investigated inflammasome signaling induced by acute and chronic isolates of ST obtained from different organs. We show that ST isolated from infected mice during the acute phase displays an increased potential to activate inflammasome signaling, which then undergoes a protracted decline during the chronic phase of infection. This decline in inflammasome signaling was associated with reduced expression of virulence factors, including flagella and the Salmonella pathogenicity island I genes. This reduction in cell death of macrophages induced by chronic isolates had the greatest impact on the NLRP3 inflammasome, which correlated with a reduction in caspase-1 activation. Furthermore, rapid cell death induced by Casp-1/11 by ST in macrophages limited the subsequent activation of cell death cascade proteins Casp-8, RipK1, RipK3, and MLKL to prevent the activation of alternative forms of cell death. We observed that the lack of the ability to induce cell death conferred a competitive fitness advantage to ST only during the acute phase of infection. Finally, we show that the chronic isolates displayed a significant attenuation in their ability to infect mice through the oral route. These results reveal that ST adapts during chronic infection by circumventing inflammasome recognition to promote the survival of both the host and the pathogen.  相似文献   

19.
20.
Signature-tagged mutagenesis is a mutation-based screening method for the identification of virulence genes of microbial pathogens. Genes isolated by this approach fall into three classes: those with known biochemical function, those of suspected function and some whose functions cannot be predicted from database searches. A variety of in vitro and in vivo methods are available to elucidate the function of genes of the second and third classes. We describe the use of some of these approaches to study the function of the Salmonella pathogenicity island 2 type III secretion system of Salmonella typhimurium. This virulence determinant is required for intracellular survival. Secretion by this system is induced by an acidic pH, and its function may be to alter trafficking of the Salmonella-containing vacuole. Use of a temperature-sensitive non-replicating plasmid and competitive index tests with other genes show that in vivo phenotypes do not always correspond to those predicted from in vitro studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号