共查询到20条相似文献,搜索用时 0 毫秒
1.
In a previous paper (Krawiec, Z., Biliński, T., Schüller, C. & Ruis, H., 2000, Acta Biochim. Polon. 47, 201-207) we have shown that catalase T holoenzyme is synthesized in the absence of oxygen after treatment of anaerobic yeast cultures with 0.3 M. NaCl, or during heat shock. This finding suggests that heme moiety of the enzyme can either be formed de novo in the absence of oxygen, or derives from the preexisting heme pool present in cells used as inoculum. The strain bearing hem1 mutation, resulting in inability to form delta-aminolevulinate (ALA), the first committed precursor of heme, was used in order to form heme-depleted cells used as inocula. The cultures were supplemented with ALA at the end of anaerobic growth prior the stress treatment. The appearance of active catalase T in the stressed cells strongly suggests that heme moiety of catalase T is formed in the absence of oxygen. This finding suggests the necessity to reconsider current opinions concerning mechanisms of heme synthesis and the role of heme as an oxygen sensor. 相似文献
2.
Cytochrome c oxidase requires multiple heme and copper cofactors to catalyze the reduction of molecular oxygen to water. Although significant progress has been made in understanding the transport and incorporation of the copper ions, considerably less is known about the trafficking and insertion of the heme cofactors. Heme O synthase (HOS) and heme A synthase (HAS) from Rhodobacter sphaeroides (Cox10 and Cox15, respectively) and Bacillus subtilis (CtaB and CtaA, respectively) have been cloned and expressed in Escherichia coli. Our results demonstrate that HOS copurifies with HAS and that HAS copurifies with HOS, indicating that HOS and HAS interact and may form a physiologically relevant complex in vivo. Consistent with this hypothesis, the presence of HAS alters the total level of farnesylated hemes, providing further evidence that HOS and HAS interact. Our current working model is that HOS and HAS form a complex and that heme O is transferred directly from HOS to HAS. Because of the strong sequence similarity and evolutionary relationship between R. sphaeroides and mitochondria, our data suggest that this complex may form in eukaryotes as well. 相似文献
3.
Constitutive and inducible nitric oxide synthases incorporate molecular oxygen into both nitric oxide and citrulline. 总被引:15,自引:0,他引:15
A M Leone R M Palmer R G Knowles P L Francis D S Ashton S Moncada 《The Journal of biological chemistry》1991,266(35):23790-23795
Nitric oxide (NO) is synthesized by a number of cells from a guanidino nitrogen atom of L-arginine by the action of either constitutive or inducible NO synthases, both of which form citrulline as a co-product. We have determined the source of the oxygen in both NO and in citrulline formed by the constitutive NO synthase from the vascular endothelium and brain and by the inducible NO synthase from the murine macrophage cell line J774. All these enzymes incorporate molecular oxygen both into NO and into citrulline. Furthermore, activated J774 cells form NO from omega-hydroxyl-L-arginine, confirming the proposal that this compound is an intermediate in the biosynthesis of NO. 相似文献
4.
5.
6.
Heme synthase (ferrochelatase) catalyzes the removal of iron from heme and demetalation of metalloporphyrins 总被引:2,自引:0,他引:2
Taketani S Ishigaki M Mizutani A Uebayashi M Numata M Ohgari Y Kitajima S 《Biochemistry》2007,46(51):15054-15061
The red pigments in meat products, including cooked cured ham, arise from the reaction of myoglobin with nitric oxide generated from exogenous nitrite. Since carcinogenic nitrosoamines may be generated by the treatment of meats with nitrite, the production of nitrite-free meat products is an attractive alternative. Raw dry-cured (Parma) hams are produced by the treatment of meats with salts other than nitrite. Analysis of pigments in raw dry-cured hams reveals that the main pigment is zinc protoporphyrin, suggesting that the conversion of heme to zinc protoporphyrin occurs via an iron-removal reaction from myoglobin heme during the processing of raw hams. Purification of the iron-removal enzyme showed that it was identical to ferrochelatase. Recombinant ferrochelatase in combination with NADH-cytochrome b5 reductase catalyzed NADH-dependent iron-removal reaction from hemin and hemoproteins. Metal ions such as zinc and cobalt were also removed from the corresponding metalloporphyrins. The addition of zinc ions led to the formation of zinc protoporphyrin. In cultured cells, the conversion of zinc mesoporphyrin to mesoheme was observed to be dependent on ferrochelatase and could be markedly induced during erythroid differentiation. This is the first demonstration of a new enzyme reaction, the reverse reaction of ferrochelatase, which may contribute to a new route of the recycling of protoporphyrin and heme in cells. 相似文献
7.
The autoxidation of 6-hydroxydopamine (6HODA) was virtually blocked (k2 less than 10(-15) M-1 S-1 at pH 8.0, ionic strength 0.04) by the simultaneous presence of diethylenetriaminepentaacetic acid (DTPA), catalase, and superoxide dismutase (SOD). No quinone product or oxygen consumption was detectable after 12 min under these conditions. Thus, if 6HODA is to react with molecular oxygen at a measurable rate, some other redox species is required as a coreductant. The subsequent addition of formate or mannitol proved capable of overcoming the total inhibition induced by the mixture of catalase, SOD, and DTPA. The simplest interpretation of the data is that most of the autoxidation of 6HODA, as commonly observed, involves successive reduction of a series of metal-bound species of oxygen; the actual transfer of electrons occurring within a ternary reductant-metal-oxygen transition state. 相似文献
8.
Heme prosthetic group required for acetylation of prostaglandin H synthase by aspirin 总被引:1,自引:0,他引:1
The ability of aspirin to acetylate PGH synthase was determined by reacting [3H-acetyl]-aspirin with purified enzyme followed by high pressure liquid chromatography analysis of the protein components of the reaction mixture. Heme-reconstituted enzyme incorporated approximately one acetyl group per 70-kDa subunit, whereas apoprotein incorporated 0.1 acetyl group per subunit. The ability of the heme prosthetic group to enhance acetylation of the protein was correlated with its ability to protect the Arg253-Gly254 peptide bond from cleavage by trypsin. Thus, heme-induced alteration of protein conformation may contribute to the enhanced labeling of Ser506 by aspirin. The present results indicate that irreversible inactivation of prostaglandin H synthase by aspirin occurs only when the heme prosthetic group is bound to the protein. Considering its short in vivo half-life, it is likely that aspirin inactivates only the steady-state fraction of PGH synthase in a cell that is active but not newly synthesized apoprotein. This may contribute to the differential kinetics of inactivation and recovery of PGH synthase activity in platelets and vascular endothelial cells after administration of low dose aspirin as a prophylactic agent against cardiovascular disease. 相似文献
9.
Vibrational structure of the formyl group on heme a. Implications on the properties of cytochrome c oxidase.
下载免费PDF全文

Resonance Raman spectra have been recorded for heme a derivatives in which the oxygen atom of the formyl group has been isotopically labeled and for Schiff base derivatives of heme a in which the Schiff base nitrogen has been isotopically labeled. The 14N-15N isotope shift in the C = N stretching mode of the Schiff base is close to the theoretically predicted shift for an isolated C = N group for both the ferric and ferrous oxidation states and in both aqueous and nonaqueous solutions. In contrast, the 16O-18O isotope shift of the C = O stretching mode of the formyl group is significantly smaller than that predicted for an isolated C = O group and is also dependent on whether the environment is aqueous or nonaqueous. This differences between the theoretically predicted shifts and the observed shifts are attributed to coupling of the C = O stretching mode to as yet unidentified modes of the heme. The complex behavior of the C = O stretching vibration precludes the possibility of making simple interpretations of frequency shifts of this mode in cytochrome c oxidase. 相似文献
10.
The N- and C-terminal halves of the heme A synthase polypeptide of Bacillus subtilis, and many other organisms, are homologous. This indicates that these enzyme proteins originate from a tandem duplication and fusion event of a gene encoding a protein half as large. The ape1694 gene of the hyperthermophilic archaeon Aeropyrum pernix encodes a protein that is similar to the hypothetical small primordial protein. We demonstrate that this A. pernix protein is a heat-stable membrane bound heme A synthase designated cCtaA. The case of cCtaA is unusual in evolution in that the primordial-like protein has not become extinct and apparently carries out the same function as the twice as large more diversified heme A synthase protein variant found in most cytochrome a-containing organisms. 相似文献
11.
Thymidylate synthase (TS) is an important target of several chemotherapeutic agents, including 5-FU and raltitrexed (Tomudex). During TS inhibition, TTP levels decrease with a subsequent increase in dUTP. Uracil incorporated into the genome is removed by base excision repair (BER). Thus, BER initiated by uracil DNA glycosylase (UDG) activity has been hypothesized to influence the toxicity induced by TS inhibitors. In this study we created a human cell line expressing the Ugi protein inhibitor of UNG family of UDGs, which reduces cellular UDG activity by at least 45-fold. Genomic uracil incorporation was directly measured by mass spectrometry following treatment with TS inhibitors. Genomic uracil levels were increased over 4-fold following TS inhibition in the Ugi-expressing cells, but did not detectably increase in UNG proficient cells. Despite the difference in genomic uracil levels, there was no difference in toxicity between the UNG proficient and UNG-inhibited cells to folate or nucleotide-based inhibitors of TS. Cell cycle analysis showed that UNG proficient and UNG-inhibited cells arrested in early S-phase and resumed replication progression during recovery from RTX treatment almost identically. The induction of gamma-H2AX was measured following TS inhibition as a measure of whether uracil excision promoted DNA double strand break formation during S-phase arrest. Although gamma-H2AX was detectable following TS inhibition, there was no difference between UNG proficient and UNG-inhibited cells. We therefore conclude that uracil excision initiated by UNG does not adequately explain the toxicity caused by TS inhibition in this model. 相似文献
12.
The catabolism of heme is carried out by members of the heme oxygenase (HO) family. The products of heme catabolism by HO-1 are ferrous iron, biliverdin (subsequently converted to bilirubin), and carbon monoxide. In addition to its function in the recycling of hemoglobin iron, this microsomal enzyme has been shown to protect cells in various stress models. Implicit in the reports of HO-1 cytoprotection to date are its effects on the cellular handling of heme/iron. However, the limited amount of uncommitted heme in non-erythroid cells brings to question the source of substrate for this enzyme in non-hemolytic circumstances. In the present study, HO-1 was induced by either sodium arsenite (reactive oxygen species producer) or hemin or overexpressed in the murine macrophage-like cell line, RAW 264.7. Both of the inducers elicited an increase in active HO-1; however, only hemin exposure caused an increase in the synthesis rate of the iron storage protein, ferritin. This effect of hemin was the direct result of the liberation of iron from heme by HO. Cells stably overexpressing HO-1, although protected from oxidative stress, did not display elevated basal ferritin synthesis. However, these cells did exhibit an increase in ferritin synthesis, compared with untransfected controls, in response to hemin treatment, suggesting that heme levels, and not HO-1, limit cellular heme catabolism. Our results suggest that the protection of cells from oxidative insult afforded by HO-1 is not due to the catabolism of significant amounts of cellular heme as thought previously. 相似文献
13.
Riistama S Verkhovsky MI Laakkonen L Wikström M Puustinen A 《Biochimica et biophysica acta》2000,1456(1):1-4
The optical spectrum of heme a is red-shifted in aa(3)-type cytochrome c oxidases compared to isolated low-spin heme A model compounds. Early spectroscopic studies indicated that this may be due to hydrogen-bonding of the formyl group of heme a to an amino acid in the close vicinity. Here we show that most of the optical spectral shift of native heme a is due to a hydrogen-bonding interaction between the formyl group and arginine-54 in subunit I of cytochrome aa(3) from Paracoccus denitrificans, and that a smaller part is due to an electrostatic interaction between the D ring propionate of heme a and arginine-474. 相似文献
14.
Giraldez RR Panda A Zweier JL 《American journal of physiology. Heart and circulatory physiology》2000,278(6):H2020-H2027
Whereas altered nitric oxide (NO.) formation from endothelial nitric oxide synthase (NOS) causes impaired vascular reactivity in a number of cardiovascular diseases, questions remain regarding how endothelial injury results in impaired NO. formation. It is unknown if loss of NOS expression or activity is required or if other factors are involved. Detergent treatment has been used to induce endothelial dysfunction. Therefore, NOS and NO. synthesis were characterized in a rat heart model of endothelial injury and dysfunction induced by the detergent Triton X-100. Cardiac NO. formation was directly measured by electron paramagnetic resonance spectroscopy. NOS activity was determined by the L-[(14)C]arginine conversion assay. Western blots and immunohistology were applied to define the amounts of NOS present in heart tissue before and after Triton treatment. Immunoelectron microscopy was performed to assess intracellular NOS distribution. A short bolus of Triton X-100, 0.25%, abolished responses to histamine and calcium ionophore while preserving response to nitroprusside. Complete blockade of NO. generation occurred after Triton treatment, but NOS activity assayed with addition of exogenous substrate and cofactors was unchanged, and identical 135-kDa NOS bands were seen on Western blots, indicating that NOS was not removed from the heart or structurally damaged by Triton. Immunohistochemistry showed no change in NOS localization after Triton treatment, and immunoelectron microscopy revealed similar NOS distribution in the plasma membrane and intracellular membranes. These results demonstrate that the endothelial dysfunction was due to decreased NO. synthesis but was not caused by loss or denaturation of NOS. Thus endothelial dysfunction due to mild endothelial membrane injury may occur in the presence of active NOS and is triggered by loss of NOS substrates or cofactors. 相似文献
15.
On the release of the formyl group from nascent protein 总被引:26,自引:0,他引:26
J M Adams 《Journal of molecular biology》1968,33(3):571-589
16.
A separate and distinct population of polyribosomes exists in the detergent-washed nuclei of adenovirus-infected HeLa cells. These polyribosomes, released by exposure to polynucleotides such as high molecular weight nuclear RNA or poly(U), do not appear to be cytoplasmic contaminants. Nuclear polyribosomes have a considerably lower buoyant density compared to cytoplasmic ones. Nuclear polyribosomes, in a cell-free system of protein synthesis, are six- to eight-fold less active compared to cytoplasmic ones and are insensitive to aurin tricarboxylic acid. They do not complement cytoplasmic polyribosomes in protein synthesis in the cell-free system. Finally, the number of proteins synthesized by nuclear polyribosomes is higher compared with that synthesized by the cytoplasmic ones. Only the virus-specific proteins, including P-VII, are synthesized by cytoplasmic polyribosomes. Nuclear polyribosomes, on the other hand, synthesize virusspecific proteins, including P-VII and VII, and a number of additional proteins not synthesized by the cytoplasmic ones. 相似文献
17.
Heme plays a critical role in blood pressure regulation because it is required by a number of enzymes that synthesize vascular modulators, including nitric oxide (NO), carbon monoxide (CO), guanosine 3',5'-cyclic monophosphate (cGMP), endothelium-derived hyperpolarizing factor (EDHF), and prostacyclin. The goal of this study was to examine the vascular effects of a short-term depletion of heme achieved through administration of the heme-synthesis inhibitor succinylacetone (SA), an irreversible inhibitor of aminolevulinic acid dehydratase (ALAD). Rats were depleted of heme by using a 4-day treatment with SA. This treatment impacted hemoenzyme function, decreasing renal nitric oxide synthase (NOS) activity (as indicated by decreased in vitro NOS activity), and increasing kidney microsomal heme oxygenase (HO) activity by 27%. SA treatment also resulted in enhanced reduction in blood pressure after infusions of exogenous NO donor MAHMA NONOate (at high dose) and acetylcholine (at low doses). Nevertheless, this SA treatment was insufficient to produce an overt elevation of basal arterial pressure. This latter lack of effect may be the result of multiple compensatory mechanisms for the regulation of blood pressure. 相似文献
18.
Human neutrophils incorporate arachidonic acid and saturated fatty acids into separate molecular species of phospholipids 总被引:1,自引:0,他引:1
C L Swendsen F H Chilton J T O'Flaherty J R Surles C Piantadosi M Waite R L Wykle 《Biochimica et biophysica acta》1987,919(1):79-89
The incorporation of radiolabeled arachidonic acid and saturated fatty acids into choline-linked phosphoglycerides (PC) of rabbit and human neutrophils was investigated by resolving the individual molecular species by reversed-phase high performance liquid chromatography. PC from neutrophils incubated with a mixture of [3H]arachidonic acid and [14C]stearic or [14C]palmitic acid contains both radiolabels; however, double labeling of individual molecular species is minimal. After labeling for 2 h, the [3H]arachidonate is distributed almost equally between diacyl and 1-O-alkyl-2-acyl species, but it is incorporated into diacyl species containing unlabeled stearate or palmitate at the sn-1 position. In contrast, labeled saturated fatty acids are incorporated only into diacyl species and contain predominantly oleate and linoleate at the sn-2 position. Labeled linoleate is not incorporated into ether-linked species, but is found in the same species as labeled stearate. The findings suggest that mechanisms exist in neutrophils for specific shunting of exogenous arachidonic acid into certain phospholipid molecular species and support the concept that the 1-O-alkyl-2-arachidonoyl species may be a functionally segregated pool of arachidonic acid within the PC of neutrophils. 相似文献
19.
Norris-Cervetto E Callaghan R Platt FM Dwek RA Butters TD 《The Journal of biological chemistry》2004,279(39):40412-40418
The multidrug-resistant cancer cell lines NCI/AdR(RES) and MES-SA/DX-5 have higher glycolipid levels and higher P-glycoprotein expression than the chemosensitive cell lines MCF7-wt and MES-SA. Inhibiting glycolipid biosynthesis by blocking glucosylceramide synthase has been proposed to reverse drug resistance in MDR cells by causing an increased accumulation of proapoptotic ceramide during treatment of cells with cytotoxic drugs. We treated both multidrug-resistant cell lines with the glucosylceramide synthase inhibitors PDMP (d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol), C9DGJ (N-nonyl-deoxygalactonojirimycin) or C4DGJ (N-butyl-deoxygalactonojirimycin). PDMP achieved a significant reversal of drug resistance in agreement with previous reports. However, the N-alkylated iminosugars C9DGJ and C4DGJ, which are more selective glucosylceramide synthase inhibitors than PDMP, failed to cause any reversal of drug resistance despite depleting glycolipids to the same extent as PDMP. Our results suggest that (a) inhibition of glucosylceramide synthase does not reverse multidrug resistance and (b) the chemosensitization achieved by PDMP cannot be caused by inhibition of glucosylceramide synthase alone. 相似文献
20.
Exposure of ferredoxin-dependent glutamate synthase (EC 1.4.7.1) mutants of Arabidopsis thaliana to photorespiratory conditions resulted in the accumulation of NH4+ and the inhibition of photosynthesis. However, upon transfer from 2% O2, 350 microliters per liter CO2, to 21% O2, 350 microliters per liter CO2, net photosynthesis declined at a slower rate in methionine sulfoximine treated leaf discs relative to controls. The recovery of photosynthesis was also more rapid in MSO-treated leaf discs although ammonia levels were more than threefold higher. Photosynthesis in leaf discs treated with azaserine was inhibited more than controls when transferred to 21% O2 and recovered less than controls when returned to 2% O2 although NH4+ levels were not significantly different. The results obtained are consistent with the view that the rapid inhibition of photosynthesis in the glutamate synthase mutants in photorespiratory conditions is not due to the accumulation of NH4+ but rather to the depletion of amino donors for glyoxylate and the consequent effects of glyoxylate on the lack of return of carbon to the chloroplast. 相似文献