首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The Giardia lamblia cyst wall (CW), which is required for survival outside the host and infection, is a primitive extracellular matrix. Because of the importance of the CW, we queried the Giardia Genome Project Database with the coding sequences of the only two known CW proteins, which are cysteine-rich and contain leucine-rich repeats (LRRs). We identified five new LRR-containing proteins, of which only one (CWP3) is up-regulated during encystation and incorporated into the cyst wall. Sequence comparison with CWP1 and -2 revealed conservation within the LRRs and the 44-amino-acid N-flanking region, although CWP3 is more divergent. Interestingly, all 14 cysteine residues of CWP3 are positionally conserved with CWP1 and -2. During encystation, C-terminal epitope-tagged CWP3 was transported to the wall of water-resistant cysts via the novel regulated secretory pathway in encystation-secretory vesicles (ESVs). Deletion analysis revealed that the four LRRs are each essential to target CWP3 to the ESVs and cyst wall. In a deletion of the most C-terminal region, fewer ESVs were stained in encysting cells, and there was no staining in cysts. In contrast, deletion of the 44 amino acids between the signal sequence and the LRRs or the region just C-terminal to the LRRs only decreased the number of cells with CWP3 targeting to ESVs and cyst wall by approximately 50%. Our studies indicate that virtually every portion of the CWP3 protein is needed for efficient targeting to the regulated secretory pathway and incorporation into the cyst wall. Further, these data demonstrate the power of genomics in combination with rigorous functional analyses to verify annotation.  相似文献   

2.
Giardia is an intestinal parasite that belongs to the earliest diverging branch of the eukaryotic lineage of descent. Giardia undergoes adaptation for survival outside the host's intestine by differentiating into infective cysts. Encystation involves the synthesis and transport of cyst wall constituents to the plasma membrane for release and extracellular organization. Nevertheless, little is known about the molecular events related to cyst wall biogenesis in Giardia. Among the components of the cyst wall there are two proteins that we have previously identified and characterized: CWP1 (26 kDa) and CWP2 (39 kDa). Expression of these proteins is coordinately induced, and both concentrated within encystation-specific secretory vesicles before their extracellular polymerization. Although highly similar to each other at the amino terminus, CWP2 includes a COOH-terminal 121-amino acid extension. Here, we show that this extension, rich in basic residues, is cleaved from CWP2 before cyst wall formation by an intracellular cysteine proteinase activity, which is induced during encystation like CWPs. Specific inhibitors prevent release of cyst wall materials, abolishing cyst wall formation. We also report the purification, cloning, and characterization of the encystation-specific cysteine proteinase responsible for the proteolytic processing of CWP2, which is homologue to lysosomal cathepsin C. Encystation-specific cysteine proteinase ESCP possesses unique characteristics compared with cathepsins from higher eukaryotes, such as a transmembrane domain and a short cytoplasmic tail. These features make this enzyme the most divergent cathepsin C identified to date and provide new insights regarding cyst wall formation in Giardia.  相似文献   

3.
The parasitic protozoan Giardia lamblia undergoes important changes to survive outside the intestine of its host by differentiating into infective cysts. During encystation, three cyst wall proteins (CWPs) are specifically expressed and concentrated within encystation-specific secretory vesicles (ESVs). ESVs are electron-dense secretory granules that transport CWPs before exocytosis and extracellular polymerization into a rigid cyst wall. Because secretory granules form at the trans-Golgi in higher eukaryotes and because Giardia lacks an identifiable Golgi apparatus, the aim of this work was to investigate the molecular basis of secretory granule formation in Giardia by examining the role of CWPs in this process. Although CWP1, CWP2, and CWP3 are structurally similar in their 26-kDa leucine-rich overlapping region, CWP2 is distinguished by the presence of a 13-kDa C-terminal basic extension. In non-encysting trophozoites, expression of different CWP chimeras showed that the CWP2 basic extension is necessary for biogenesis of ESVs, which occurs in a compartment derived from the endoplasmic reticulum. Nevertheless, the CWP2 basic extension per se is insufficient to trigger ESV formation, indicating that other domains in CWPs are also required. We found that CWP2 is a key regulator of ESV formation by acting as an aggregation factor for CWP1 and CWP3 through interactions mediated by its conserved region. CWP2 also acts as a ligand for sorting via its C-terminal basic extension. These findings show that granule biogenesis requires complex interactions among granule components and membrane receptors.  相似文献   

4.
Giardia lamblia is a flagellate protozoan that infects humans and other mammals and the most frequently isolated intestinal parasite worldwide. Giardia trophozoites undergo essential biological changes to survive outside the intestine of their host by differentiating into infective cysts. Cyst formation, or encystation, is considered one of the most primitive adaptive responses developed by eukaryotes early in evolution and crucial for the transmission of the parasite among susceptible hosts. During this process, proteins that will assemble into the extracellular cyst wall (CWP1 and CWP2) are transported to the cell surface within encystation-specific secretory vesicles (ESVs) by a developmentally regulated secretory pathway. Cyst wall proteins (CWPs) are maintained as a dense material inside the ESVs, but after exocytosis, they form the fibrillar matrix of the cyst wall. Little is known about the molecular mechanisms involved in granule biogenesis and discharge in Giardia, as well as the assembly of the extracellular wall. In this work, we provide evidences that a novel 54-kDa protein that exclusively localizes to the ESVs is induced during encystation similar to CWPs, proteolytically processed during granule maturation, and able to bind calcium in vitro. The gene encoding this molecule predicts a novel protein (called gGSP for G. lamblia Granule-specific Protein) without homology to any other protein reported in public databases. Nevertheless, it possesses characteristics of calcium-sequestering molecules of higher eukaryotes. Inhibition of gGSP expression abolishes cyst wall formation, suggesting that this secretory granule protein regulates Ca(2+)-dependent degranulation of ESVs during cyst wall formation.  相似文献   

5.
6.
7.
8.
9.
The protozoan parasite Giardia lamblia acquires cholesterol from the environment since it is unable to synthesise cholesterol de novo and this is vital for trophozoite growth. Conversely, the lack of cholesterol was described as an essential event to trigger encystation, the differentiation of trophozoites to mature cysts. During the G. lamblia cell cycle, cholesterol is acquired as a free molecule as well as through receptor-mediated endocytosis (RME) of lipoproteins. In this work, we describe the involvement of RME in the cell differentiation process of G. lamblia. We found that a reduction in the expression of the medium subunit (Glµ2) of the giardial adaptin protein GlAP2 impaired RME, triggering the process of encystation in growing cells. Contrary to expectations, decreasing Glµ2 expression produced a cohort of trophozoites that yielded significantly less mature cysts when cells were induced to encyst. Analysis of the subcellular localization of Glµ2 and the cyst wall protein 1 (CWP1) during encystation was later performed, to dissect the process. Our results showed, on one hand, that blocking RME by inhibiting Glµ2 expression, and probably cholesterol entry, is sufficient to induce cell differentiation but not to complete the process of encystation. On the other hand, we observed that GlAP2 is necessary to accomplish the final steps of encystation by sorting CWP1 to the plasma membrane for cyst wall formation. The understanding of the mechanisms involved in cyst formation should provide novel insights into the control of giardiasis, an endemic worldwide neglected disease.  相似文献   

10.
Synthesis, transport, and assembly of the extracellular cyst wall is the hallmark of Giardia lamblia encystation. Much is known of the biochemical pathways and their regulation. However, from a cell biology point of view, the biogenesis of the encystation specific vesicles (ESVs) that transport cyst wall proteins to the periphery of the cell is poorly understood. Therefore, we exploited a number of complementary ultrastructural approaches to test the hypothesis that the formation of ESVs utilizes a novel regulated secretory pathway. We analyzed parasites at different stages of encystation in vitro by electron microscopy of thin sections, freeze fracture replicas, and three-dimensional reconstruction from serial sections of cells fixed for cytochemical localization of the endoplasmic reticulum (ER) marker, glucose 6-phosphatase. We also used a stereological approach to determine the area occupied by the ER, clefts, ESVs, and cyst wall. Taken together, our kinetic data suggest that some ER cisternae first dilate to form clefts, which enlarge into the ESVs. Living non-encysting and early-encysting trophozoites were labeled around the periphery of both nuclei with C(6)-NBD-ceramide. At 18-21 h, outward migration of some ESVs frequently caused protrusions at the periphery of encysting trophozoites. The presence of lysosome-like peripheral vesicles between the ESV and plasma membrane of the cell was confirmed using acridine orange, an acidic compartment marker. Our data suggest that G. lamblia has a novel secretory pathway in which certain functions of the ER and Golgi co-localize spatially and temporally. These studies will increase understanding of the evolutionary appearance of regulated secretory pathways for assembly of a primitive extracellular matrix in an early diverging eukaryote.  相似文献   

11.
Giardia lamblia, which belongs to the earliest identified lineage to diverge from the eukaryotic line of descent, is one of many protists reported to lack a Golgi apparatus. Our recent finding of a developmentally regulated secretory pathway in G. lamblia makes it an ideal organism with which to test the hypothesis that the Golgi may be more readily demonstrated in actively secreting cells. These ultrastructural studies now show that a regulated pathway of transport and secretion of cyst wall antigens via a novel class of large, osmiophilic secretory vesicles, the encystation-specific vesicles (ESV), is assembled during encystation of G. lamblia. Early in encystation, cyst antigens are localized in simple Golgi membrane stacks and concentrated within enlarged Golgi cisternae which appear to be precursors of ESV. This would represent an unusual mechanism of secretory vesicle biogenesis. Later in differentiation, cyst antigens are localized within ESV, which transport them to the plasma membrane and release them by exocytosis to the nascent cell wall. ESV are not observed after completion of the cyst wall. In contrast to the regulated transport of cyst wall proteins, we demonstrate a distinct constitutive lysosomal pathway. During encystation, acid phosphatase activity is localized in endoplasmic reticulum, Golgi, and small constitutive peripheral vacuoles which function as lysosomes. However, acid phosphatase activity is not detectable in ESV. These studies show that G. lamblia, an early eukaryote, is capable of carrying out Golgi-mediated sorting of proteins to distinct regulated secretory and constitutive lysosomal pathways.  相似文献   

12.
Dynamins are universally conserved large guanosine triphosphatases, which function as mechanoenzymes in membrane scission. The primitive protozoan Giardia lamblia has a single dynamin-related protein (GlDRP) with an unusual domain structure. Giardia lacks a Golgi apparatus but generates transient Golgi-like delay compartments dubbed encystation-specific vesicles (ESVs), which serve to accumulate and mature cyst wall proteins during differentiation to infectious cyst forms. Here, we analyze the function of GlDRP during growth and encystation and demonstrate that it relocalizes from peripheral endosomal-lysosomal compartments to nascent ESVs. We show that GlDRP is necessary for secretion of the cyst wall material and ESV homeostasis. Expression of a dominant-negative GlDRP variant does not interfere with ESV formation but blocks cyst formation completely prior to regulated exocytosis. GlDRP colocalizes with clathrin at the cell periphery and is necessary for endocytosis of surface proteins to endosomal-lysosomal organelles in trophozoites. Electron microscopy and live cell imaging reveal gross morphological changes as well as functional impairment of the endocytic system in cells expressing the dominant-negative GlDRP. Thus, giardial DRP plays a key role in two distinct trafficking pathways and in organelle homeostasis, both essential functions for the proliferation of the parasite in the gut and its transmission to a new host.  相似文献   

13.
Controlled secretion of a protective extracellular matrix is required for transmission of the infective stage of a large number of protozoan and metazoan parasites. Differentiating trophozoites of the highly minimized protozoan parasite Giardia lamblia secrete the proteinaceous portion of the cyst wall material (CWM) consisting of three paralogous cyst wall proteins (CWP1–3) via organelles termed encystation-specific vesicles (ESVs). Phylogenetic and molecular data indicate that Diplomonads have lost a classical Golgi during reductive evolution. However, neogenesis of ESVs in encysting Giardia trophozoites transiently provides basic Golgi functions by accumulating presorted CWM exported from the ER for maturation. Based on this “minimal Golgi” hypothesis we predicted maturation of ESVs to a trans Golgi-like stage, which would manifest as a sorting event before regulated secretion of the CWM. Here we show that proteolytic processing of pro-CWP2 in maturing ESVs coincides with partitioning of CWM into two fractions, which are sorted and secreted sequentially with different kinetics. This novel sorting function leads to rapid assembly of a structurally defined outer cyst wall, followed by slow secretion of the remaining components. Using live cell microscopy we find direct evidence for condensed core formation in maturing ESVs. Core formation suggests that a mechanism controlled by phase transitions of the CWM from fluid to condensed and back likely drives CWM partitioning and makes sorting and sequential secretion possible. Blocking of CWP2 processing by a protease inhibitor leads to mis-sorting of a CWP2 reporter. Nevertheless, partitioning and sequential secretion of two portions of the CWM are unaffected in these cells. Although these cysts have a normal appearance they are not water resistant and therefore not infective. Our findings suggest that sequential assembly is a basic architectural principle of protective wall formation and requires minimal Golgi sorting functions.  相似文献   

14.
15.
Giardia lamblia (Giardia duodenalis or Giardia intestinalis) is a protozoan parasite of vertebrates with broad host specificity. Specific antibodies directed against cyst antigens can interfere with the cyst wall-building process. In this study, we engineered Streptococcus gordonii to express a 26 kDa fragment of cyst wall protein 2 (CWP2), containing a relevant B cell epitope, on the cell surface. This is the first report of S. gordonii expressing a protein of parasite origin. As S. gordonii was intended for intestinal delivery of CWP2, it was determined that this oral commensal bacterium is able to persist in the murine intestine for 30 days. Immunization with recombinant streptococci expressing the 26 kDa fragment resulted in higher antibody levels. Specific anti-CWP2 IgA antibodies were detected in fecal samples and anti-CWP2 IgG antibodies were detected in serum demonstrating the efficacy of S. gordonii for intragastric antigen delivery. In a pilot challenge experiment, immunized mice demonstrated a significant 70% reduction in cyst output.  相似文献   

16.
During encystation Giardia trophozoites secrete a fibrillar extracellular matrix of glycans and cyst wall proteins on the cell surface. The cyst wall material is accumulated in encystation-specific vesicles (ESVs), specialized Golgi-like compartments generated de novo, after export from the endoplasmic reticulum (ER) and before secretion. These large post-ER vesicles neither have the morphological characteristics of Golgi cisternae nor sorting functions, but may represent an evolutionary early form of the Golgi-like maturation compartment. Because little is known about the genesis and maturation of ESVs, we used a limited proteomics approach to discover novel proteins that are specific for developing ESVs or associated peripherally with these organelles. Unexpectedly, we identified cytoplasmic and luminal factors of the ER quality control system on two-dimensional electrophoresis gels, i.e. several proteasome subunits and HSP70-BiP. We show that BiP is exported to ESVs and retrieved via its C-terminal KDEL signal from ESVs. In contrast, cytoplasmic proteasome complexes undergo a developmentally regulated re-localization to ESVs during encystation. This suggests that maturation of bulk exported cyst wall material in the Golgi-like ESVs involves both continuous activity of ER-associated quality control mechanisms and retrograde Golgi to ER transport.  相似文献   

17.
18.
Jiráková K  Kulda J  Nohýnková E 《Protist》2012,163(3):465-479
Differentiation into infectious cysts (encystation) and multiplication of pathogenic trophozoites after hatching from the cyst (excystation) are fundamental processes in the life cycle of the human intestinal parasite Giardia intestinalis. During encystation, a bi-nucleated trophozoite transforms to a dormant tetra-nucleated cyst enveloped by a protective cyst wall. Nuclear division during encystation is not followed by cytokinesis. In contrast to the well-studied mechanism of cyst wall formation, information on nuclei behavior is incomplete and basic cytological data are lacking. Here we present evidence that (1) the nuclei divide by semi-open mitosis during early encystment; (2) the daughter nuclei coming from different parent nuclei are always arranged in pairs; (3) in both pairs, the nuclei are interconnected via bridges formed by fusion of their nuclear envelopes; (4) each interconnected nuclear pair is associated with one basal body tetrad of the undivided diplomonad mastigont; and (5) the interconnection between nuclei persists through the cyst stage being a characteristic feature of encysted Giardia. Based on the presented results, a model of nuclei behavior during Giardia differentiation is proposed.  相似文献   

19.
20.
We isolated 5' flanking regions of four genes, Ci-Galphai1, Ci-arr, Ci-vAChTP, and Ci-vGAT, each of which is expressed in distinct sets of neurons in the central nervous system of the ascidian Ciona intestinalis, and we examined their function by introducing green fluorescent protein (GFP)-fusion constructs into Ciona embryos. The reporter gene driven by the 5' flanking region of Ci-Galphai1, Ci-arr, and Ci-vAChTP recapitulated the endogenous gene expression patterns, while that of Ci-vGAT can drive GFP expression in particular subsets of neurons expressing the endogenous gene. Deletion analysis revealed that the Ci-Galphai1 promoter consists of multiple regulatory modules controlling the expression in different types of cells. The GFP fluorescence enabled visualization of cell bodies and axons of different sets of neurons in ascidian larvae. These promoters can be a powerful tool for studying molecular mechanisms of neuronal development as well as neuron networks and functions in ascidians.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号