首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Na+/nucleoside cotransporters hCNT1 (650 residues) and hCNT2 (658 residues) are 72% identical in amino acid sequence and contain 13 putative transmembrane helices (TMs). Both transport uridine and adenosine but are otherwise selective for pyrimidine (system cit) and purine (system cif) nucleosides, respectively. Previously, we used site-directed mutagenesis and functional expression in Xenopus oocytes to identify two pairs of adjacent residues in TMs 7 and 8 of hCNT1 (Ser319-Gln320 and Ser353-Leu354) that, when converted to the corresponding residues in hCNT2 (Gly-Met and Thr-Val, respectively), changed the permeant selectivity of the transporter from cit to cif. We now report an investigation of the effects of corresponding mutations in TM 8 alone and demonstrate unique S353T- and L354V-induced changes in nucleoside specificity and cation coupling, respectively. hCNT1 mutation S353T produced a profound decrease in cytidine transport efficiency (Vmax/Km ratio) and, in combination with L354V (S353T/L354V), resulted in a novel uridine-preferring transport phenotype. In addition, the L354V mutation markedly increased the apparent affinity of hCNT1 for Na+ and Li+. Both hCNT1 TM 8 residues exhibited uridine-protectable inhibition by p-chloromercuribenzene sulfonate when converted to Cys, suggesting that they occupy positions within or closely adjacent to a common cation/nucleoside translocation pore.  相似文献   

2.
3.
The human concentrative (Na+-linked) plasma membrane transport proteins hCNT1, hCNT2, and hCNT3 are pyrimidine nucleoside-selective (system cit), purine nucleoside-selective (system cif), or broadly selective for both pyrimidine and purine nucleosides (system cib), respectively. All have orthologs in other mammalian species and belong to a gene family (CNT) that has members in insects, nematodes, pathogenic yeast, and bacteria. Here, we report the cDNA cloning and functional characterization of a CNT family member from an ancient marine prevertebrate, the Pacific hagfish (Eptatretus stouti). This Na+-nucleoside symporter, designated hfCNT, is the first transport protein to be characterized in detail in hagfish and is a 683-amino acid residue protein with 13 predicted transmembrane helical segments (TMs). hfCNT was 52, 50, and 57% identical in sequence to hCNT1, hCNT2, and hCNT3, respectively. Similarity to hCNT3 was particularly marked in the TM 4-13 region. When produced in Xenopus oocytes, hfCNT exhibited the transport properties of system cib, with uridine, thymidine, and inosine apparent K(m) values of 10-45 microM. The antiviral nucleoside drugs 3'-azido-3'-deoxythymidine, 2',3'-dideoxycytidine, and 2',3'-dideoxyinosine were also transported. Simultaneous measurement of uridine-evoked currents and radiolabeled uridine uptake under voltage-clamp conditions gave a Na+-to-uridine coupling ratio of 2:1 (cf. 2:1 for hCNT3 and 1:1 for hCNT1/2). The apparent K50 value for Na+ activation was >100 mM. A 50:50 chimera between hfCNT and hCNT1 (TMs 7-13 of hfCNT replaced by those of hCNT1) exhibited hCNT1-like cation interactions, establishing that the structural determinants of cation stoichiometry and binding affinity were located within the carboxy-terminal half of the protein. The high degree of sequence similarity between hfCNT and hCNT3 may indicate functional constraints on the primary structure of the transporter and suggests that cib-type CNTs fulfill important physiological functions.  相似文献   

4.
Nucleosides are hydrophilic molecules and require specialized transport proteins for permeation of cell membranes. There are two types of nucleoside transport processes: equilibrative bidirectional processes driven by chemical gradients and inwardly directed concentrative processes driven by the sodium electrochemical gradient. The equilibrative nucleoside transport processes (es, ei) are found in most mammalian cell types, whereas the concentrative nucleoside transport processes (cit, cif, cib, csg, cs) are present primarily in specialized epithelia. Using a variety of cloning strategies and functional expression in oocytes of Xenopus laevis, we have isolated and characterized cDNAs encoding the rat and human nucleoside transporter proteins of the four major nucleoside transport processes of mammalian cells (es, ei, cit, cif). From the sequence relationships of these proteins with each other and with sequences in the public data bases, we have concluded that the equilibrative and concentrative nucleoside transport processes are mediated by members of two previously unrecognized groups of integral membrane proteins, which we have designated the equilibrative nucleoside transporter (ENT) and the concentrative nucleoside transporter (CNT) protein families. This review summarizes the current state of knowledge in the molecular biology of the ENT and CNT protein families, focusing on the characteristics of the four human (h) and rat (r) nucleoside transport proteins (r/hENT1, r/hENT2, r/hCNT1, r/hCNT2).  相似文献   

5.
6.
SLC28 genes, encoding concentrative nucleoside transporter proteins (CNT), show little genetic variability, although a few single nucleotide polymorphisms (SNPs) have been associated with marked functional disturbances. In particular, human CNT1S546P had been reported to result in negligible thymidine uptake. In this study we have characterized the molecular mechanisms responsible for this apparent loss of function. The hCNT1S546P variant showed an appropriate endoplasmic reticulum export and insertion into the plasma membrane, whereas loss of nucleoside translocation ability affected all tested nucleoside and nucleoside-derived drugs. Site-directed mutagenesis analysis revealed that it is the lack of the serine residue itself responsible for the loss of hCNT1 function. This serine residue is highly conserved, and mutation of the analogous serine in hCNT2 (Ser541) and hCNT3 (Ser568) resulted in total and partial loss of function, respectively. Moreover, hCNT3, the only member that shows a 2Na(+)/1 nucleoside stoichiometry, showed altered Na(+) binding properties associated with a shift in the Hill coefficient, consistent with one Na(+) binding site being affected by the mutation. Two-electrode voltage-clamp studies using the hCNT1S546P mutant revealed the occurrence of Na(+) leak, which was dependent on the concentration of extracellular Na(+) indicating that, although the variant is unable to transport nucleosides, there is an uncoupled sodium transport.  相似文献   

7.
The SLC28 family of concentrative nucleoside transporter (CNT) proteins in mammalian cells contains members of two distinct phylogenic subfamilies. In humans, hCNT1 and hCNT2 belong to one subfamily, and hCNT3 to the other. All three CNTs mediate inwardly-directed Na(+)/nucleoside cotransport, and are either pyrimidine nucleoside-selective (hCNT1), purine nucleoside-selective (hCNT2), or broadly selective for both pyrimidine and purine nucleosides (hCNT3). While previous studies have characterized cation interactions with both hCNT1 and hCNT3, little is known about the corresponding properties of hCNT2. In the present study, heterologous expression in Xenopus oocytes in combination with radioisotope flux and electrophysiological techniques has allowed us to undertake a side-by-side comparison of hCNT2 with other hCNT family members. Apparent K (50) values for Na(+) activation were voltage-dependent, and similar in magnitude for all three transporters. Only hCNT3 was also able to couple transport of uridine to uptake of H(+). The Na(+)/nucleoside stoichiometry of hCNT2, as determined from both Hill coefficients and direct charge/flux measurements, was 1:1. This result was the same as for hCNT1, but different from that of hCNT3 (2:1). The charge-to-(22)Na(+) uptake stoichiometry was 1:1 for all three hCNTs. In parallel with their division into two separate CNT subfamilies, hCNT2 shares common cation specificity and coupling characteristics with hCNT1, which differ markedly from those of hCNT3.  相似文献   

8.
The human SLC28 family of concentrative (Na+-dependent) nucleoside transporters has three members, hCNT1, hCNT2 and hCNT3. Previously, we have used heterologous expression in Xenopus laevis oocytes in combination with an engineered cysteine-less hCNT3 protein hCNT3(C-) to undertake systematic substituted cysteine accessibility method (SCAM) analysis of the transporter using the membrane-impermeant thiol reactive reagent p-chloromercuribenzene sulfonate (PCMBS). A continuous sequence of more than 300 individual amino acid residue positions were investigated, including the entire transport domain of the protein, as well as important elements of the corresponding hCNT3 structural domain. We have now constructed 3D structural homology models of hCNT3 based upon inward-facing, intermediates and outward-facing crystal structures of the bacterial CNT Neisseria wadsworthii CNTNW to show that all previously identified PCMBS-sensitive residues in hCNT3 are located above (ie on the extracellular side of) the key diagonal barrier scaffold domain TM9 in the transporter’s outward-facing conformation. In addition, both the Na+ and permeant binding sites of the mobile transport domain of hCNT3 are elevated from below the scaffold domain TM9 in the inward-facing conformation to above TM9 in the outward-facing conformation. The hCNT3 homology models generated in the present study validate our previously published PCMBS SCAM data, and confirm an elevator-type mechanism of membrane transport.  相似文献   

9.
The functional significance of two highly conserved amino acid residues, F316 [putative transmembrane domain (TM)7] and G476 (putative TM11), in the concentrative nucleoside transporter hCNT1 (SLC28A1) was examined by performing site-directed mutagenesis. Conservative mutations at these positions (F316A, F316Y, G476A, and G476L) were generated and expressed in Madin-Darby canine kidney (MDCK) cells as fusion polypeptides with green fluorescent protein (GFP). Unlike wild-type hCNT1, G476A-GFP and G476L-GFP were not expressed in the plasma membrane in undifferentiated or differentiated MDCK cells and had no functional activity. Like wild-type hCNT1, F316A-GFP and F316Y-GFP were expressed in the plasma membrane of undifferentiated MDCK cells and in the apical membrane of differentiated MDCK cells. Remarkably, transport of [3H]uridine by F316Y-GFP or F316A-GFP was highly sensitive to inhibition by guanosine. Furthermore, genotyping of exon 11 of hCNT1 (TM7) in a panel of 260 anonymous human DNA samples revealed a novel F316H variant (TT>CA; 1/260). When expressed in MDCK cells, [3H]uridine transport by F316H was also found to be sensitive to inhibition by guanosine (IC50 = 148 µM). The effect of the F316H mutation resembles the N4 type nucleoside transporter phenotype previously reported to be present in human kidneys. We suggest that the N4 transport system is a naturally occurring variant of hCNT1, perhaps at the F316 position. Collectively, our data show that G476 is important for correct membrane targeting, folding, and/or intracellular processing of hCNT1. In addition, we have discovered that hCNT1 displays natural variation at position F316 and that the variant F316H confers on the transporter an unusual sensitivity to inhibition by guanosine. localization; inhibition; polymorphism  相似文献   

10.
The concentrative pyrimidine-preferring nucleoside transporter 1 (hCNT1), cloned from human fetal liver, was expressed in Xenopus laevis oocytes. Using the two-electrode voltage-clamp technique, it is shown that translocation of nucleosides by this transporter generates sodium inward currents. Membrane hyperpolarization (from -50 to -150 mV) did not affect the K(0.5) for uridine, although it increased the transport current approximately 3-fold. Gemcitabine (a pyrimidine nucleoside-derived drug) but not fludarabine (a purine nucleoside-derived drug) induced currents in oocytes expressing the hCNT1 transporter. The K(0.5) value for gemcitabine at -50 mV membrane potential was lower than that for natural substrates, although this drug induced a lower current than uridine and cytidine, thus suggesting that the affinity binding of the drug transporter is high but that translocation occurs more slowly. The analysis of the currents generated by the hCNT1-mediated transport of nucleoside-derived drugs used in anticancer and antiviral therapies will be useful in the characterization of the pharmacological profile of this family of drug transporters and will allow rapid screening for uptake of newly developed nucleoside-derived drugs.  相似文献   

11.
The recently identified human and rodent plasma membrane proteins CNT1, CNT2 and CNT3 belong to a gene family (CNT) that also includes the bacterial nucleoside transport protein NupC. Heterologous expression in Xenopus oocytes has established that CNT1-3 correspond functionally to the three major concentrative nucleoside transport processes found in human and other mammalian cells (systems cit, cif and cib, respectively) and mediate Na(+) - linked uptake of both physiological nucleosides and anti-viral and anti-neoplastic nucleoside drugs. Here, one describes a complementary Xenopus oocyte transport study of Escherichia coli NupC using the plasmid vector pGEM-HE in which the coding region of NupC was flanked by 5'- and 3'-untranslated sequences from a Xenopus beta-globin gene. Recombinant NupC resembled human (h) and rat (r) CNT1 in nucleoside selectivity, including an ability to transport adenosine and the chemotherapeutic drugs 3'-azido-3'-deoxythymidine (AZT), 2',3'- dideoxycytidine (ddC) and 2'-deoxy-2',2'-difluorocytidine (gemcitabine), but also interacted with inosine and 2',3'- dideoxyinosine (ddl). Apparent affinities were higher than for hCNT1, with apparent K(m) values of 1.5-6.3 microM for adenosine, uridine and gemcitabine, and 112 and 130 microM, respectively, for AZT and ddC. Unlike the relatively low translocation capacity of hCNT1 and rCNT1 for adenosine, NupC exhibited broadly similar apparent V(max) values for adenosine, uridine and nucleoside drugs. NupC did not require Na(+) for activity and was H(+) - dependent. The kinetics of uridine transport measured as a function of external pH were consistent with an ordered transport model in which H(+) binds to the transporter first followed by the nucleoside. These experiments establish the NupC-pGEM-HE/oocyte system as a useful tool for characterization of NupC-mediated transport of physiological nucleosides and clinically relevant nucleoside therapeutic drugs.  相似文献   

12.
The concentrative nucleoside transporter (CNT) protein family in humans is represented by three members, hCNT1, hCNT2, and hCNT3. hCNT3, a Na+/nucleoside symporter, transports a broad range of physiological purine and pyrimidine nucleosides as well as anticancer and antiviral nucleoside drugs, and belongs to a different CNT subfamily than hCNT1/2. H+-dependent Escherichia coli NupC and Candida albicans CaCNT are also CNT family members. The present study utilized heterologous expression in Xenopus oocytes to investigate the specificity, mechanism, energetics, and structural basis of hCNT3 cation coupling. hCNT3 exhibited uniquely broad cation interactions with Na+, H+, and Li+ not shared by Na+-coupled hCNT1/2 or H+-coupled NupC/CaCNT. Na+ and H+ activated hCNT3 through mechanisms to increase nucleoside apparent binding affinity. Direct and indirect methods demonstrated cation/nucleoside coupling stoichiometries of 2:1 in the presence of Na+ and both Na+ plus H+, but only 1:1 in the presence of H+ alone, suggesting that hCNT3 possesses two Na+-binding sites, only one of which is shared by H+. The H+-coupled hCNT3 did not transport guanosine or 3'-azido-3'-deoxythymidine and 2',3'-dideoxycytidine, demonstrating that Na+- and H+-bound versions of hCNT3 have significantly different conformations of the nucleoside binding pocket and/or translocation channel. Chimeric studies between hCNT1 and hCNT3 located hCNT3-specific cation interactions to the C-terminal half of hCNT3, setting the stage for site-directed mutagenesis experiments to identify the residues involved.  相似文献   

13.
Members of the concentrative nucleoside transporter (CNT) family (SLC28) mediate the transport of naturally-occurring nucleosides, and nucleoside analog drugs across the plasma membrane of epithelial cells. Each of the three CNT family members has a distinct specificity for naturally occurring nucleosides, and residues that contribute to the specificity of each transporter have been identified. In contrast, the molecular determinants of specificity for synthetic nucleoside analogs are not known. In this study, we take advantage of the large species difference that exists between human and rat CNT2 (hCNT2 and rCNT2) in their ability to transport the nucleoside analog drug cladribine, 2CdA, (rCNT2 > > > hCNT2) to identify the critical domains and amino acid residues that contribute to the observed difference in specificity between CNT2 orthologs. Using chimeric proteins of human and rat CNT2, we determined that the C-terminal half of CNT2 contained the determinants of 2CdA selectivity. We replaced key residues in the C terminus of hCNT2 with the equivalent residue in rCNT2. One residue in the C-terminal portion of CNT2 was found to significantly contribute to 2CdA selectivity: hCNT2-S354A. This mutant caused an increase of 5-6-fold over hCNT2. The 2-chloro pharmacophore, rather than the 2'-deoxyribose was responsible for the reduced 2CdA uptake by hCNT2. Our data are consistent with a model in which an increased capability for hydrogen bonding in critical amino acids that reside in the C terminus of rCNT2 contributes to its enhanced selectivity for 2CdA.  相似文献   

14.
15.
We have cloned and functionally expressed a sodium-dependent human nucleoside transporter, hCNT2, from a CNS cancer cell line U251. Our cDNA clone of hCNT2 had the same predicted amino acid sequence as the previously cloned hCNT2 transporter. Of the several cell lines studied, the best hCNT2 transport function was obtained when transiently expressed in U251 cells. Na(+)-dependent uptake of [3H]inosine in U251 cells transiently expressing hCNT2 was 50-fold greater than that in non-transfected cells, and uptake in Na(+)-containing medium was approximately 30-fold higher than that at Na(+)-free condition. The hCNT2 displayed saturable uptake of [3H]inosine with K(m) of 12.8 microM and V(max) of 6.66 pmol/mg protein/5 min. Uptake of [3H]inosine was significantly inhibited by the purine nucleoside drugs dideoxyinosine and cladribine, but not by acyclic nucleosides including acyclovir, ganciclovir, and their prodrugs valacyclovir and valganciclovir. This indicates that the closed ribose ring is important for binding of nucleoside drugs to hCNT2. Among several pyrimidine nucleosides, hCNT2 favorably interacted with the uridine analogue floxuridine. Interestingly, we found that benzimidazole analogues, including maribavir, 5,6-dichloro-2-bromo-1-beta-D-ribofuranosylbenzimidazole (BDCRB), and 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), were strong inhibitors of inosine transport, even though they have a significantly different heterocycle structure compared to a typical purine ring. As measured by GeneChip arrays, mRNA expression of hCNT2 in human duodenum was 15-fold greater than that of hCNT1 or hENT2. Further, the rCNT2 expression in rat duodenum was 20-fold higher than rCNT1, rENT1 or rENT2. This suggests that hCNT2 (and rCNT2) may have a significant role in uptake of nucleoside drugs from the intestine and is a potential transporter target for the development of nucleoside and nucleoside-mimetic drugs.  相似文献   

16.
The transport of nucleosides and nucleobases in the yeast Saccharomyces cerevisiae is reviewed and the use of this organism to study recombinant mammalian concentrative nucleoside transport (CNT) proteins is described. A selection strategy based on the ability of an expressed nucleoside transporter cDNA to mediate thymidine uptake by yeast under a selective condition that depletes endogenous thymidylate was used to assess the transport capacity of heterologous transporter proteins. The pyrimidine-nucleoside selective concentrative transporters from human (hCNT1) and rat (rCNT1) complemented the imposed thymidylate depletion in S. cerevisiae, as did N-terminally truncated versions of hCNT1 and rCNT1 lacking up to 31 amino acids. Transporter-mediated rescue of S. cerevisiae by both nucleoside transporters was inhibited by cytidine, uridine and adenosine, but not by guanosine or inosine. This work represents the development of a new model system for the functional production of recombinant nucleoside transporters of the CNT family of membrane proteins.  相似文献   

17.
18.
The transport of nucleosides and nucleobases in the yeast Saccharomyces cerevisiae is reviewed and the use of this organism to study recombinant mammalian concentrative nucleoside transport (CNT) proteins is described. A selection strategy based on the ability of an expressed nucleoside transporter cDNA to mediate thymidine uptake by yeast under a selective condition that depletes endogenous thymidylate was used to assess the transport capacity of heterologous transporter proteins. The pyrimidine-nucleoside selective concentrative transporters from human (hCNT1) and rat (rCNT1) complemented the imposed thymidylate depletion in S. cerevisiae, as did N-terminally truncated versions of hCNT1 and rCNT1 lacking up to 31 amino acids. Transporter-mediated rescue of S. cerevisiae by both nucleoside transporters was inhibited by cytidine, uridine and adenosine, but not by guanosine or inosine. This work represents the development of a new model system for the functional production of recombinant nucleoside transporters of the CNT family of membrane proteins.  相似文献   

19.
The transportability of cytosine-containing nucleosides by recombinant hCNT1 was investigated in transfected mammalian cells. Apparent K(m) values for hCNT1-mediated transport of uridine, cytidine and deoxycytidine were, respectively, 59, 140 and 150 microM. Uridine transport was inhibited 89, 32 and 11%, respectively, by 500 microM gemcitabine, cytarabine and lamivudine, demonstrating that, unlike gemcitabine (a high-affinity hCNT1 permeant), cytarabine and lamivudine are poor hCNT1 permeants.  相似文献   

20.
Human concentrative nucleoside transporter 1 (hCNT1), the first discovered of three human members of the SLC28 (CNT) protein family, is a Na+/nucleoside cotransporter with 650 amino acids. The potential functional roles of 10 conserved aspartate and glutamate residues in hCNT1 were investigated by site-directed mutagenesis and heterologous expression in Xenopus oocytes. Initially, each of the 10 residues was replaced by the corresponding neutral amino acid (asparagine or glutamine). Five of the resulting mutants showed unchanged Na+-dependent uridine transport activity (D172N, E338Q, E389Q, E413Q, and D565N) and were not investigated further. Three were retained in intracellular membranes (D482N, E498Q, and E532Q) and thus could not be assessed functionally. The remaining two (E308Q and E322Q) were present in normal quantities at cell surfaces but exhibited low intrinsic transport activities. Charge replacement with the alternate acidic amino acid enabled correct processing of D482E and E498D, but not of E532D, to cell surfaces and also yielded partially functional E308D and E322D. Relative to wild-type hCNT1, only D482E exhibited normal transport kinetics, whereas E308D, E308Q, E322D, E322Q, and E498D displayed increased K50(Na+) and/or Km(uridine) values and diminished Vmax(Na+) and Vmax(uridine) values. E322Q additionally exhibited uridine-gated uncoupled Na+ transport. Together, these findings demonstrate roles for Glu-308, Glu-322, and Glu-498 in Na+/nucleoside cotransport and suggest locations within a common cation/nucleoside translocation pore. Glu-322, the residue having the greatest influence on hCNT1 transport function, exhibited uridine-protected inhibition by p-chloromercuriphenyl sulfonate and 2-aminoethyl methanethiosulfonate when converted to cysteine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号