首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Cytochrome c oxidase (EC 1.9.3.1) is an enzyme which is composed of subunits derived from both the mitochondrial and the nuclear genomes. To determine whether or not the expression of these two genomes is co-ordinated at the mRNA level, we have examined the steady-state levels of mRNAs coding for cytochrome c oxidase subunit III (mitochondrially encoded) and subunit VIc (nuclear-encoded) in rat tissues. This was compared with the tissue concentration of the holoenzyme, which was estimated by measuring cytochrome c oxidase enzyme activity. The tissues (heart, brain, liver, kidney, soleus muscle and superficial white vastus muscle) possessed a 13-fold range of enzyme activity, which was highest in heart and lowest in the superficial vastus muscle. Specific subunit mRNA levels were quantified by using slot-blot hybridization of cDNA probes to total tissue RNA. The highest values for subunit III and Vlc mRNA tissue contents were found in kidney, followed by liver and heart (40-60% of that of kidney). The white vastus muscle contained the lowest subunit mRNA level (15% of that of kidney). Although some variability was apparent within each tissue, a parallel pattern of mRNA expression of the nuclear- and mitochondrially encoded subunits was observed. Differences between muscle (heart, vastus and soleus) and non-muscle tissues were noted in the relationship between mRNA and protein levels of expression. Thus, although this suggests that tissue-specific regulatory processes operate, the steady-state expression of subunit III and subunit Vlc mRNAs appears to be co-ordinately regulated.  相似文献   

4.
5.
J. J. Mulero  T. D. Fox 《Genetics》1993,133(3):509-516
PET111 is a yeast nuclear gene specifically required for the expression of the mitochondrial gene COX2, encoding cytochrome c oxidase subunit II (coxII). Previous studies have shown that PET111 activates translation of the COX2 mRNA. To map the site of PET111 action we have constructed, in vitro, genes coding for chimeric mRNAs, introduced them into mitochondria by transformation and studied their expression. Translation of a chimeric mRNA with the 612-base 5'-untranslated leader of the COX3 mRNA fused precisely to the structural gene for the coxII-precursor protein is independent of PET111, but does require a COX3 mRNA-specific translational activator known to work on the COX3 5'-leader. This result demonstrates that PET111 is not required for any posttranslational step. Translation of a chimeric mRNA with the 54-base 5'-leader of the COX2 mRNA fused precisely to the structural gene for cytochrome c oxidase subunit III was dependent on PET111 activity. These results demonstrate that PET111 acts specifically at a site in the short COX2 5'-leader to activate translation of downstream coding sequences.  相似文献   

6.
7.
8.
9.
10.
11.
Connor, Michael K., and David A. Hood. Effect ofmicrogravity on the expression of mitochondrial enzymes in rat cardiac and skeletal muscles. J. Appl.Physiol. 84(2): 593-598, 1998.The purpose ofthis study was to examine the expression of nuclear and mitochondrialgenes in cardiac and skeletal muscle (triceps brachii) in response toshort-duration microgravity exposure. Six adult male rats were exposedto microgravity for 6 days and were compared with six ground-basedcontrol animals. We observed a significant 32% increase in heartmalate dehydrogenase (MDH) enzyme activity, which was accompanied by a62% elevation in heart MDH mRNA levels after microgravity exposure.Despite modest elevations in the mRNAs encoding subunits III, IV, andVIc as well as a 2.2-fold higher subunit IV protein content afterexposure to microgravity, heart cytochromec oxidase (CytOx) enzyme activityremained unchanged. In skeletal muscle, MDH expression was unaffectedby microgravity, but CytOx activity was significantly reduced 41% bymicrogravity, whereas subunit III, IV, and VIc mRNA levels and subunitIV protein levels were unaltered. Thus tissue-specific (i.e., heart vs.skeletal muscle) differences exist in the regulation of nuclear-encoded mitochondrial proteins in response to microgravity. In addition, theexpression of nuclear-encoded proteins such as CytOx subunit IV andexpression of MDH are differentially regulated within a tissue. Ourdata also illustrate that the heart undergoes previously unidentifiedmitochondrial adaptations in response to short-term microgravityconditions more dramatic than those evident in skeletal muscle. Furtherstudies evaluating the functional consequences of these adaptations inthe heart, as well as those designed to measure protein turnover, arewarranted in response to microgravity.

  相似文献   

12.
13.
14.
15.
Summary Mitochondrial translation of the cob mRNA to yield apocytochrome b is specifically dependent on the nuclear gene CBS1, while mitochondrial translation of the oxi2 mRNA to yield cytochrome oxidase subunit III (cox III) is specifically dependent on the nuclear gene PET494. Chimeric oxi2 mRNAs bearing the 5 leaders of other mitochondrial mRNAs, transcribed from rho - mitochondrial DNAs termed MSU494, are translated in pet494 mutants. In this study, we examined translation of coxIII from MSU494-encoded chimeric mRNAs in zygotes of defined nuclear and mitochondrial genotype. CoxIII was translated from a chimeric mRNA bearing the cob leader only when the zygotes contained a wild-type CBS1 gene. CoxIII translation from an mRNA bearing the 5 leader of the mitochondrial gene aap1 was not dependent on CBS1 activity. We conclude that the product of the nuclear gene CBS1, or something under its control, acts in the mitochondrion on the cob mRNA 5 leader to activate translation of downstream coding sequences.  相似文献   

16.
17.
18.
Despite the demonstration of a clear biochemical defect, the genetic alterations causing childhood forms of cytochromec oxidase (COX) deficiency remain unknown. The double genetic origin (nuclear and mitochondrial DNA), and the complexity of COX enzyme structure and regulation, indicate the need for genetic iinvestigations of the molecular structure of individual COX subunits. In the present study a new monoclonal antibody, which reacts exclusively with heart-type human COX subunit VIIa (VIIa-H), and other monoclonal antibodies against human COX subunits, were used in the immunohistochemical analysis of skeletal muscle from children with different forms of mitochondrial myopathy with COX deficiency. By immunohistochemical investigation a normal reaction was seenn with antibodies to COX subunits IV, Va+Vb, and VIa+VIc in all four cases, and in two cases with antibodies to COX VIIa-H and VIIa+VIIb. In muscle from a fatal infantile case with cardiac and skeletal muscle involvement, no immunohistochemical reaction was seen with the monoclonal antibody against the tissue-specific subunit VIIa-H. In muscle from an 11-year-old boy with exclusive muscular symptoms and signs, immunohistological reactions were absent with COX subunit VIIa-H and COX subunits VIIa+VIIb, and slightly decreased with COX subunit II, thus demonstrating a different molecular mechanism in each case. It is concluded that the molecular basis of COX deficiency in childhood may vary greatly between patients.  相似文献   

19.
To examine normal and aberrant translation initiation in Saccharomyces cerevisiae mitochondria, we fused the synthetic mitochondrial reporter gene ARG8m to codon 91 of the COX2 coding sequence and inserted the chimeric gene into mitochondrial DNA (mtDNA). Translation of the cox2(1-91)::ARG8m mRNA yielded a fusion protein precursor that was processed to yield wild-type Arg8p. Thus mitochondrial translation could be monitored by the ability of mutant chimeric genes to complement a nuclear arg8 mutation. As expected, translation of the cox2(1-91)::ARG8m mRNA was dependent on the COX2 mRNA-specific activator PET111. We tested the ability of six triplets to function as initiation codons in both the cox2(1-91)::ARG8m reporter mRNA and the otherwise wild-type COX2 mRNA. Substitution of AUC, CCC or AAA for the initiation codon abolished detectable translation of both mRNAs, even when PET111 activity was increased. The failure of these mutant cox2(1-91)::ARG8m genes to yield Arg8p demonstrates that initiation at downstream AUG codons, such as COX2 codon 14, does not occur even when normal initiation is blocked. Three mutant triplets at the site of the initiation codon supported detectable translation, with efficiencies decreasing in the order GUG, AUU, AUA. Increased PET111 activity enhanced initiation at AUU and AUA codons. Comparisons of expression, at the level of accumulated product, of cox2(1-91)::ARG8m and COX2 carrying these mutant initiation codons revealed that very low-efficiency translation can provide enough Cox2p to sustain significant respiratory growth, presumably because Cox2p is efficiently assembled into stable cytochrome oxidase complexes.  相似文献   

20.
Here, relationships between alterations in tissue-specific content, protein structure, activity, and/or assembly of respiratory complexes III and IV induced by mutations in corresponding genes and various human pathologies are reviewed. Cytochrome bc(1) complex and cytochrome c oxidase (COX) deficiencies have been detected in a heterogeneous group of neuromuscular and non-neuromuscular diseases in childhood and adulthood, presenting a number of clinical phenotypes of variable severity. Such disorders can be caused by mutations located either in mitochondrial genes or in nuclear genes encoding structural subunits of the complexes or corresponding assembly factors/chaperones. Of the defects in mitochondrial DNA genes, mutations in cytochrome b subunit of complex III, and in structural subunits I-III of COX have been described to date. As to defects in nuclear DNA genes, mutations in genes encoding the complexes assembly factors such as the BCS1L protein for complex III; and SURF-1, SCO1, SCO2, and COX10 for complex IV have been identified so far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号