首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cellular mechanisms regulating secretion of the peptide hormone atrial natriuretic factor (ANF) differ in neonatal atrial and ventricular cardiocytes. We demonstrate that although both cell types synthesize and secrete ANF, only atrial cells store peptide in abundant secretory granules. Neonatal ventricular cells secrete ANF rapidly after synthesis and lack secretory granules. We propose that ventricular ANF is released by a constitutive secretory pathway whereas atrial ANF is stored and released by a regulated pathway. Furthermore, ventricular ANF mRNA and hormone concentrations decrease during the first week of life. Developmental variation in the use of ANF secretory pathways may reflect changing requirements for maintenance of intravascular volume and pressure. Tissue-specific modulation of hormone secretory pathways appears to be a novel response to developmentally induced changes in the requirements for a peptide hormone.  相似文献   

2.
Summary An immunohistochemical study of rat fetal hearts at 20 days of gestation revealed the presence of immunoreactive atrial natriuretic factor (ANF) in cardiocytes of the left and right atria as well as in certain cells is the left and right ventricles. In the atria, cells of the adluminal pectinate muscles appear more densely labeled than the more peripheral mural cells. In the ventricles, immunoreactive cells were found only in adluminal cardiocytes of the presumptive trabeculae and papillary muscles. The results indicate that ANF is synthesized in the perinatal heart, and that the presence of this hormone in the ventricular cardiocytes may be of only temporary nature during certain stages of pre- and postnatal development.Supported by Miami Valley Chapter of American Heart Association MVH-86-019 and MVH-86-010  相似文献   

3.
4.
The present study was designed to determine the plasma clearance rate of atrial natriuretic factor (ANF) during development in chronically-instrumented fetal, newborn and adult non-pregnant sheep. To determine the contribution of the kidney in the metabolism of ANF, urinary clearance of ANF was also measured. Intravenous infusion of ANF (0.025 and 0.1 microgram.min-1.kg-1) produced a significant decrease in mean arterial blood pressure in newborn lambs and in adult non-pregnant sheep. Estimated plasma ANF clearance rate for the 0.025 and 0.1 microgram.min-1.kg-1 ANF infusion rate were respectively 177 +/- 55 and 155 +/- 34 ml.min-1.kg-1 in fetuses, 138 +/- 26 and 97 +/- 13 ml.min-1.kg-1 in newborn lambs and, 148 +/- 33 and 103 +/- 25 ml.min-1.kg-1 in adult nonpregnant ewes. Fetal, newborn and adult ANF plasma clearance rates during high ANF infusion rate (0.1 microgram.min-1.kg-1) were not significantly different. Low or high ANF infusion rate was not associated with significant changes in urinary ANF concentration or urinary ANF excretion rate. Taken together, the present study demonstrates that ANF plasma clearance rate is similar in fetal, newborn and adult non-pregnant sheep and that the excretory function of the kidney contributes only minimally to ANF plasma clearance rate.  相似文献   

5.
To assess the possibility that atrial natriuretic peptide plays a role in salt and water balance during early mammalian development, we examined hearts from fetal and neonatal rates for the presence of this peptide and presumed target tissues for their ability to bind the hormone. Immunohistochemistry was used to localize and radioimmunoassay to quantify this peptide in heart. Immunoreactive atrial natriuretic peptide was visualized in the fetal heart on day 17.5 post-conception. It was distributed throughout the atrial appendages and free wall and, in ventricle, in the trabeculae carnae and chordae tendineae. The concentrations of immunoreactive atrial natriuretic peptide in atria of rats on day 19.5 post-conception were one-tenth of those in the adult. Levels of this peptide in fetal ventricle were low and virtually absent from the adult tissue. Specific binding of radiolabelled atrial natriuretic peptide measured by whole organ counting occurred in several organs from 19.5-day fetal and neonatal rats. A number of these tissues, including the kidney, ileum, adrenal, lung and liver, are targets for and/or bind the peptide in adult rats. Specific binding in these tissues was localized using autoradiography at anatomical sites similar to those in adult organs. Specific binding was also seen in fetal but not neonatal skin. In the kidney, binding was associated with immature as well as mature glomeruli. These findings support the proposition that atrial natriuretic peptide may function in the perinatal rat as it does in the adult and, in addition, may play a unique role during fetal life.  相似文献   

6.
Expression of atrial natriuretic factor gene in heart ventricular tissue   总被引:14,自引:0,他引:14  
A novel peptide hormone, atrial natriuretic factor (ANF), was recently isolated and characterized in mammalian atria. This hormone has potent natriuretic, diuretic and vasorelaxant activities. Since ANF bioactivity was initially found in atria but not in ventricles, it was assumed that the ANF gene is specifically expressed in atria. We now report that ANF mRNA is present in ventricular tissue as well as in atria. This is clearly demonstrated by in situ hybridization and by Northern blot analysis. Rat ventricular ANF mRNA concentration is a hundred-fold lower than in atria. As in atria, the 126 amino acids precursor form of ANF is predominant in ventricles and it is present at a thousand-fold lower concentration. The ten-fold discrepancy in the ratio of ANF mRNA to immunoreactivity between atria and ventricles could reflect a higher rate of peptide release in the latter. Thus, ventricular ANF production may be physiologically significant in view of the much larger ventricular mass.  相似文献   

7.
Present views on the biological significance of atrial natriuretic factor (ANF) relate this polypeptide hormone to the regulation of blood pressure and volume through its modulating effects on renal function, on blood vessel tone and permeability, and on the renin-angiotensin-aldosterone system. Although very important advances in the understanding of ANF have been made over the decade since its discovery, some fundamental facts about ANF biosynthesis and release remain to be elucidated. Stretch-induced enhancement of ANF release appears as the most significant mechanism underlying the endocrine response of the atria to acute volume load. This response decays over a period of minutes, indicating that chronic stimulation of ANF release involves mechanisms different from, or in addition to, those acting during acute stretch-stimulated release. In neither acute nor chronic conditions are the cellular or molecular mechanisms underlying ANF release understood. To better understand long-term stimulation of ANF release, we have conducted extensive in vitro testing of several hormones and neurotransmitters to determine their ability to modify ANF release. From these studies, clear-cut evidence of ANF stimulation was obtained with the vasopressor peptide endothelin. Investigations on the cell and molecular biology of cardiac muscle development and hypertrophy have shown that ANF is involved in cardiac growth. The role played by ANF in these processes is now being determined, but this is one line of evidence that suggests that this hormone, together with other natriuretic peptides, may have autocrine or paracrine functions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The heart as an endocrine organ   总被引:1,自引:0,他引:1  
Modern data on atrial natriuretic factor (ANF) are presented. Synthesis of this factor, its storage and release from cardiac atria are described. The role of ANF in the body fluid volume regulation and blood pressure homeostasis is discussed. ANF is regarded as a circulating hormone.  相似文献   

9.
Investigations culminating at the beginning of this century clearly established that the cardiac muscle cell (cardiocytes) is differentiated for excitation, conduction, and contraction. All of the physiology and pathophysiology of the heart was developed subsequently based on this concept. However, morphological investigations in the mid 1950s suggested a secretory function for mammalian atrial cardiocytes. These cells contain storage granules, the specific atrial granules, which resemble granules found in polypeptide hormone-producing cells. The development of techniques for the study of these granules using a combined biochemical-morphological approach during the 1970s defined their general chemical nature and their behaviour under different experimental conditions. Because the number of atrial granules change dramatically following upsets of water and electrolyte balance, atrial muscle extracts were tested for effects on kidney function. In 1981, it was reported that atrial extracts contain a natriuretic factor (ANF) capable of inducing massive diuresis, increases in hematocrit, and lowering of blood pressure. It was demonstrated soon thereafter that ANF is stored within specific atrial granules. More recent work has defined ANF as a polypeptide hormone that appears to modulate or antagonize the renin-angiotensin-aldosterone system. Current work attempts to define the physiological and pathophysiological role for ANF as well as possible therapeutic uses.  相似文献   

10.
11.
B Ahrén 《Life sciences》1990,47(21):1973-1977
Recently, thyroid follicular cells were shown to exhibit atrial natriuretic factor (ANF)-like immunoreactivity and high affinity ANF receptors. In this study, we therefore examined the effects of synthetic rat ANF1-28 on basal and stimulated thyroid hormone secretion in the mouse, according to the McKenzie technique. Iodine deficient mice were pretreated with 125I and thyroxine. ANF (3 nmol/animal) was found to inhibit the increase in blood radioiodine levels that was induced by TSH or vasoactive intestinal polypeptide (VIP). Furthermore, ANF and norepinephrine additively inhibited the TSH-induced increase in blood radioiodine levels. It is concluded that ANF inhibits thyroid hormone secretion, which, therefore, might be locally regulated by intrathyroidal ANF.  相似文献   

12.
The atrial natriuretic factor (ANF) is a cardiac hormone whose gene and receptor are widely expressed in extracardiac tissues and organs. ANF induces its biological effects by binding to its specific guanylyl-cyclase-A receptor, which synthesizes the intracellular second messenger cGMP. Increasing evidences indicate that the testis shows the highest reactivity of stimulation of guanylate cyclase by ANF. The well-established functionally active ANF receptors in seminiferous tubules raise the question of the origin and function of ANF in the testis. Therefore, the current study was carried out to investigate the spatial and temporal distribution of ANF in the rat testis by use of immunocytochemistry. Our immunocytochemical results showed that at different pre- and postnatal ages of testicular development ANF was constantly expressed in Leydig cell cytoplasm. However, the intensity of immunoreaction varied between the different Leydig cell populations (fetal, progenitor and immature) and apparently depends on the acquisition of testosterone producing ability. In seminiferous tubules ANF staining was established in the cytoplasm of the developing spermatocytes, in degenerating germ cells (23-day of age) in the cytoplasm of Sertoli cells, cap phase of acrosomal development and in the spermatids (55-day of age). The observed staining patterns suggest a broader spectrum of ANF activities and a possible participation in the whole process of regulation of germ cell development. Our data provide additional support for the hypothesis that ANF plays a major role in autocrine/paracrine regulation of the rat male gonad.  相似文献   

13.
Studies in intact animals have suggested that angiotensin II (AII) and antidiuretic hormone (ADH) increase the plasma concentration of atrial natriuretic factor (ANF). The purpose of these studies was to examine the effects of AII and ADH on ANF secretion in a rat heart-lung preparation under conditions where aortic pressure could be regulated and other indirect effects of these hormones eliminated. ANF secretion was estimated as the total amount of ANF present in a perfusion reservoir at the end of each 30-min period. A pump was used to deliver a fluorocarbon perfusate to the right atrium at rates of either 2 or 5 ml/min. In a time control series where venous return was maintained at 2 ml/min for three 30-min periods ANF secretion was 672 +/- 114, 794 +/- 91, and 793 +/- 125 pg/min (n = 6, P greater than 0.05). When venous return was increased from 2 to 5 ml/min ANF secretion increased from 669 +/- 81 to 1089 +/- 127 pg/min (P less than 0.01). The addition of AII to the perfusate in concentrations of 50, 100, or 200 pg/ml (n = 6 in each group) had no significant effect on basal ANF secretion or the ANF response to increasing venous return. Similarly, the addition of ADH to the perfusate in concentrations of 5, 25, or 100 pg/ml had no significant effect on ANF release from the heart. These results suggest that the ability of AII and ADH to increase plasma ANF concentration in vivo may be due to the effects of these hormones on right or left atrial pressure.  相似文献   

14.
Atrial natriuretic factor (ANF) is a 28-amino acid peptide hormone with potent natriuretic, diuretic and vasodilator properties. Isolation and DNA sequence analysis of rat and human cDNA clones revealed that ANF is synthesized from a 126-amino acid precursor which is highly conserved in both species. Southern blot analysis indicated that the ANF gene is present in a single copy per haploid genome. Both human and rat ANF genes were isolated and showed a similar structural organization which consisted of three exons and two introns. The ANF gene was localized to the short arm of human chromosome 1 and mouse chromosome 4. While atria are the major site of expression of the ANF gene in adult heart, other tissues like ventricles, lung, anterior pituitary, hypothalamus and adrenal synthesize ANF albeit to a much lower extent. In ventricles, ANF mRNA levels are 150 times lower than in atria. However, in cardiac hypertrophy or in congestive heart failure, ventricular ANF mRNA and peptide levels are dramatically (100-fold) increased both in animal models and in humans. This suggests that ventricles are a major site of ANF gene expression in certain pathophysiological conditions and that ANF is not an exclusively atrial peptide as was originally thought.  相似文献   

15.
Synthetic rat atrial natriuretic factor (ANF) was found to attenuate, in a dose-dependent manner, basal and corticotropin-releasing factor-induced secretion of proopiomelanocortin-derived peptides from cultured anterior and intermediate lobe cells of rat pituitary. ANF was also found to suppress basal and growth hormone-releasing factor-stimulated secretion of growth hormone from anterior lobe cells of rat pituitary. These results, together with reports of the existence of ANF-positive neurons in the hypothalamus and ANF-positive fibers in the median eminence, suggest that hypothalamic ANF is probably involved in the regulation of pituitary hormone secretion, especially that of proopiomelanocortin-derived peptides and growth hormone.  相似文献   

16.
Effect of native and synthetic atrial natriuretic factor on cyclic GMP   总被引:24,自引:0,他引:24  
Mammalian atrial cardiocyte granules contain a potent natriuretic and diuretic peptide. Since cGMP appears to be involved in the modulation of cholinergic and toxin-induced sodium transport, we examined the effect of atrial natriuretic factor (ANF) on this nucleotide. Atrial but not ventricular extracts elicited approximately a 28-fold increase of urinary cGMP excretion parallel to the natriuresis and diuresis. The atrial extracts also elevated cGMP levels in kidney slices and primary cultures of renal tubular cells. The effect of ANF on cGMP appeared to be specific since antibodies which were capable of inhibiting the ANF-induced diuresis also suppressed cGMP excretion. Furthermore, during the course of ANF purification, the ANF-induced increase of cGMP production by kidney cells paralleled the heightened specific natriuretic activity of the atrial factor. A synthetic peptide (8-33)-ANF similarly increased urinary plasma and kidney tubular cGMP levels. The exact mechanism of action of ANF on cGMP remains to be elucidated, but indirect inhibition of cGMP phosphodiesterase appears to participate in its effect.  相似文献   

17.
Using a novel in vitro co-culture system, we investigated the possible influence of vascular endothelial cells on the secretion of atrial natriuretic factor (ANF) from atrial myocytes. Co-culture of bovine aortic endothelial cells grown on Cytodex-3 microcarrier beads with primary monolayer cultures of neonatal rat myocytes induced a 2.1-fold increase in immunoreactive ANF (irANF) in the medium, compared with irANF in medium from atrial cultures alone. This increase did not appear to be the result of processing of prohormone to more immunoreactive species, and could be inhibited by 47% with 10 microM acetylcholine. The endothelium-derived vasoconstrictor peptide, endothelin, elicited a dose-dependent increase in ANF secretion from atrial cultures, but, contrary to vasopressin, was incapable of further stimulating release from atrial-endothelial co-cultures. These experiments suggest that endothelium stimulates the release of ANF from myocytes, possibly by the action of the peptide endothelin.  相似文献   

18.
Blood-brain barrier and atrial natriuretic factor   总被引:1,自引:0,他引:1  
In brain, binding sites for atrial natriuretic factor (ANF) have been characterized in areas such as circumventricular organs that lack the tight capillary endothelial junctions of the blood-brain barrier and therefore are exposed to circulating peptides. Since atrial natriuretic factor acts directly on vascular endothelium and has been proposed to be actively involved in blood pressure regulation and fluid homeostasis, it is interesting to know whether ANF receptors exist on brain capillaries that constitute the blood-brain barrier and participate in the constant fluid exchange between blood and brain. The present paper reports recent evidence of the presence of ANF receptors located on the structure. It assesses the specific binding of 125I-labelled ANF on bovine brain microvessel preparations and its coupling with a guanylate cyclase system. The potential physiological role of ANF on brain microcirculation and blood-brain barrier functions is discussed.  相似文献   

19.
Seven normal subjects underwent sequential 20-min infusion of arginine vasopressin (AVP) at 0.5 and 2 ng/(kg.min) and a complete right-side heart hemodynamic evaluation during the study to analyze the effect of this hormone on atrial natriuretic factor (ANF) secretion in humans and to elucidate whether this effect was primary or secondary to the hemodynamic or hormonal changes induced by AVP. Plasma ANF levels increased at the end of the first (P less than 0.05) and second (P less than 0.01) infusion periods. No significant changes in mean arterial, pulmonary artery, right and left atrial pressures were recorded during the study. Cardiac output (P less than 0.05) and heart rate (P less than 0.05) decreased, while total vascular resistances (P less than 0.05) increased with respect to basal values in both infusion periods. Plasma renin activity decreased (P less than 0.01) at the end of the infusion, while plasma aldosterone, epinephrine and norepinephrine showed no significant changes. We conclude that arginine vasopressin increases plasma ANF levels in humans and that this effect cannot be ascribed to hemodynamic or hormonal changes induced by this hormone, suggesting a direct effect of vasopressin on the atrial myocyte.  相似文献   

20.
Corticotrophic secretion of ACTH is stimulated by corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP), and suppressed by glucocorticoids. In vitro and preclinical studies suggest that atrial natriuretic factor (ANF) may be a peptidergic inhibitor of pituitary-adrenocortical activity. The aim of this study was to elucidate a possible role of ANF as a modulator of ACTH release in humans. A bolus injection of 100 micrograms human CRH (hCRH) during a 30 min intravenous infusion of 5 micrograms/min human alpha atrial natriuretic factor (h alpha ANF) was administered at 19:00 to six healthy male volunteers. In comparison to saline, a blunted CRH-stimulated secretion of ACTH (mean maximum plasma level +/- SD 45 min after hCRH: saline 46.2 +/- 14.2 pg/ml, h alpha ANF 34.6 +/- 13.8 pg/ml, p-value = 0.007) and a delayed rise (10 min) in cortisol were detected. The maximum plasma cortisol levels remained nearly unchanged between saline and h alpha ANF administration (mean maximum plasma level +/- SD 60 min after hCRH: saline 182 +/- 26 ng/ml, h alpha ANF 166 +/- 54 ng/ml). No effects of h alpha ANF on basal cortisol levels were observed; in contrast, basal ACTH plasma levels were slightly reduced. Basal blood pressure and heart rate remained unaffected. In the control experiment, infusion of 3 IU AVP in the same experimental paradigm increased basal and stimulated ACTH and cortisol levels significantly in comparison to saline. These observations suggest that intravenously administered haANF inhibits the CRH-stimulated release of ACTH in man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号