首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Genetic epidemiological studies have shown that genetic factors are important in the pathogenesis of the idiopathic inflammatory bowel diseases (IBD), Crohn disease (CD), and ulcerative colitis (UC). A genome screen in the United Kingdom found linkage of IBD to a 41-cM region of chromosome 12, surrounding D12S83. We aimed to replicate this linkage and to narrow the region of interest. Nonparametric linkage analyses at microsatellites surrounding D12S83 were performed in 122 North American Caucasian families containing 208 genotyped IBD-affected relative pairs. Transmission/disequilibrium tests (TDTs) were also performed. We confirmed that IBD is linked to chromosome 12 (peak GENEHUNTER-PLUS LOD* score 2.76 [P = .00016] between D12S1724 and D12S90). The evidence for linkage is contributed by both the group of CD-affected relative pairs (peak GENEHUNTER-PLUS LOD* score 1.79 [P = .0021] between D12S1724 and D12S90) and the group of UC-affected relative pairs (peak GENEHUNTER-PLUS LOD* score 1.82 [P = .0019] at D12S335). The TDT is positive at the D12S83 locus (global chi2 = 16.41, 6 df, P = .012). In conclusion, we have independently confirmed linkage of IBD to the chromosome 12 region that we investigated. A positive TDT at D12S83 suggests that we have greatly narrowed the chromosome 12 region that contains an IBD locus.  相似文献   

2.
In this paper, we applied the nonparametric linkage regression approach to the Caucasian genome scan data from the Collaborative Study on the Genetics of Alcoholism to search for regions of the genome that exhibit evidence for linkage to putative alcoholism-predisposing genes. The multipoint single-locus model identified four regions of the genome with LOD scores greater than one. These regions were on 7p near D7S1790 (LOD = 1.31), two regions on 7q near D7S1870 (LOD = 1.15) and D7S1799 (LOD = 1.13) and 21q near D21S1440 and D21S1446 (LOD = 1.78). Jointly modeling these loci provided stronger evidence for linkage in each of these regions (LOD = 1.58 on 7q11, LOD = 1.61 on 11q23, and LOD = 1.95 on 21q22). The evidence for linkage tended to increase among pedigrees with earlier mean age of onset at 8q23 (p = 0.0016), 14q21 (p = 0.0079), and 18p12 (p = 0.0021) and with later mean age of onset at 4q35 (p = 0.0067) and 9p22 (p = 0.0008).  相似文献   

3.
Genome scans in Icelandic, Australian and New Zealand, and Finnish families have localized putative susceptibility loci for preeclampsia/ eclampsia to chromosome 2. The locus mapped in the Australian and New Zealand study (designated PREG1) was thought to be the same locus as that identified in the Icelandic study. In both these studies, two distinct quantitative trait locus (QTL) regions were evident on chromosome 2. Here, we describe our fine mapping of the PREG1 locus and a genetic analysis of two positional candidate genes. Twenty-five additional microsatellite markers were genotyped within the 74-cM linkage region defined by the combined Icelandic and Australian and New Zealand genome scans. The overall position and shape of the localization evidence obtained using nonparametric multipoint analysis did not change from that seen previously in our 10-cM resolution genome scan; two peaks were displayed, one on chromosome 2p at marker D2S388 (107.46 cM) and the other on chromosome 2q at 151.5 cM at marker D2S2313. Using the robust two-point linkage analysis implemented in the Analyze program, all 25 markers gave positive LOD scores with significant evidence of linkage being seen at marker D2S2313 (151.5 cM), achieving a LOD score of 3.37 under a strict diagnostic model. Suggestive evidence of linkage was seen at marker D2S388 (107.46 cM) with a LOD score of 2.22 under the general diagnostic model. Two candidate genes beneath the peak on chromosome 2p were selected for further analysis using public single nucleotide polymorphisms (SNPs) within these genes. Maximum LOD scores were obtained for an SNP in TACR1 (LOD = 3.5) and for an SNP in TCF7L1 (LOD = 3.33), both achieving genome-wide significance. However, no evidence of association was seen with any of the markers tested. These data strongly support the presence of a susceptibility gene on chromosome 2p11-12 and substantiate the possibility of a second locus on chromosome 2q23.  相似文献   

4.
Basal Cell Nevus Syndrome (BCNS) is an autosomal dominant disease. PTCH1 gene mutations have been found responsible in many but not all pedigrees. Inflammatory Bowel Disease (IBD) is a complex genetic disorder, disproportionate in Ashkenazim, and characterized by chronic intestinal inflammation. We revisited a large Ashkenazim pedigree, first reported in 1968, with multiple diagnoses of BCNS and IBD, and with a common genetic cause for both disorders proposed. We expanded the pedigree to four generations and performed a genome-wide linkage study for BCNS and IBD traits. Twelve members with BCNS, seven with IBD, five with both diagnoses and eight unaffected were genotyped. Both non-parametric (GENEHUNTER 2.1) and parametric (FASTLINK) linkage analyses were performed and a validation through simulation was performed. BCNS linked to chromosome 9q22 (D9S1120) just proximal to the PTCH1 gene (NPL=3.26, P=0.003; parametric two-point LOD=2.4, parametric multipoint LOD=3.7). Novel IBD linkage evidence was observed at chromosome 1p13 (D1S420, NPL 3.92, P=0.0047; parametric two-point LOD=1.9). Linkage evidence was also observed to previously reported IBD loci on 4q, (D4S2623, NPL 3.02, P=0.012; parametric two-point LOD=2.15), 10q23 (D10S1225 near DLG5, NPL 3.33, P=0.0085; parametric two-point LOD=1.3), 12 overlapping the IBD2 locus (D12S313, NPL 2.6, P=0.018; parametric two-point LOD=1.52), and 7q (D7S510 and D7S3046, NPL 4.06, P=0.0035; parametric two-point LOD=2.18). In this pedigree affected by both BCNS and IBD, the two traits and their respective candidate genetic loci segregate independently; BCNS maps to the PTCH1 gene and IBD maps to several candidate regions, mostly overlapping previously observed IBD loci.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.Carolien I. Panhuysen and Amir Karban contributed equally to this work  相似文献   

5.
Improved molecular understanding of the pathogenesis of type 2 diabetes is essential if current therapeutic and preventative options are to be extended. To identify diabetes-susceptibility genes, we have completed a primary (418-marker, 9-cM) autosomal-genome scan of 743 sib pairs (573 pedigrees) with type 2 diabetes who are from the Diabetes UK Warren 2 repository. Nonparametric linkage analysis of the entire data set identified seven regions showing evidence for linkage, with allele-sharing LOD scores > or =1.18 (P< or =.01). The strongest evidence was seen on chromosomes 8p21-22 (near D8S258 [LOD score 2.55]) and 10q23.3 (near D10S1765 [LOD score 1.99]), both coinciding with regions identified in previous scans in European subjects. This was also true of two lesser regions identified, on chromosomes 5q13 (D5S647 [LOD score 1.22] and 5q32 (D5S436 [LOD score 1.22]). Loci on 7p15.3 (LOD score 1.31) and 8q24.2 (LOD score 1.41) are novel. The final region showing evidence for linkage, on chromosome 1q24-25 (near D1S218 [LOD score 1.50]), colocalizes with evidence for linkage to diabetes found in Utah, French, and Pima families and in the GK rat. After dense-map genotyping (mean marker spacing 4.4 cM), evidence for linkage to this region increased to a LOD score of 1.98. Conditional analyses revealed nominally significant interactions between this locus and the regions on chromosomes 10q23.3 (P=.01) and 5q32 (P=.02). These data, derived from one of the largest genome scans undertaken in this condition, confirm that individual susceptibility-gene effects for type 2 diabetes are likely to be modest in size. Taken with genome scans in other populations, they provide both replication of previous evidence indicating the presence of a diabetes-susceptibility locus on chromosome 1q24-25 and support for the existence of additional loci on chromosomes 5, 8, and 10. These data should accelerate positional cloning efforts in these regions of interest.  相似文献   

6.
Insulin resistance and hyperinsulinemia are strong correlates of obesity and type 2 diabetes, but little is known about their genetic determinants. Using data on nondiabetics from Mexican American families and a multipoint linkage approach, we scanned the genome and identified a major locus near marker D6S403 for fasting "true" insulin levels (LOD score 4.1, empirical P<.0001), which do not crossreact with insulin precursors. Insulin resistance, as assessed by the homeostasis model using fasting glucose and specific insulin (FSI) values, was also strongly linked (LOD score 3.5, empirical P<.0001) with this region. Two other regions across the genome were found to be suggestively linked to FSI: a location on chromosome 2q, near marker D2S141, and another location on chromosome 6q, near marker D6S264. Since several insulin-resistance syndrome (IRS)-related phenotypes were mapped independently to the regions on chromosome 6q, we conducted bivariate multipoint linkage analyses to map the correlated IRS phenotypes. These analyses implicated the same chromosomal region near marker D6S403 (6q22-q23) as harboring a major gene with strong pleiotropic effects on obesity and on lipid measures, including leptin concentrations (e.g., LOD(eq) for traits-specific insulin and leptin was 4.7). A positional candidate gene for insulin resistance in this chromosomal region is the plasma cell-membrane glycoprotein PC-1 (6q22-q23). The genetic location on chromosome 6q, near marker D6S264 (6q25.2-q26), was also identified by the bivariate analysis as exerting significant pleiotropic influences on IRS-related phenotypes (e.g., LOD(eq) for traits-specific insulin and leptin was 4.1). This chromosomal region harbors positional candidate genes, such as the insulin-like growth factor 2 receptor (IGF2R, 6q26) and acetyl-CoA acetyltransferase 2 (ACAT2, 6q25.3-q26). In sum, we found substantial evidence for susceptibility loci on chromosome 6q that influence insulin concentrations and other IRS-related phenotypes in Mexican Americans.  相似文献   

7.
Metabolic syndrome refers to the clustering of disease conditions such as insulin resistance, hyperinsulinemia, dyslipidemia, hypertension, and obesity. To explore the genetic predispositions of this complex syndrome, we conducted a principal components analysis using data on 14 phenotypes related to the risk of developing metabolic syndrome. The subjects were 566 nondiabetic Mexican Americans, distributed in 41 extended families from the San Antonio Family Heart Study. The factor scores obtained from these 14 phenotypes were used in multipoint linkage analysis using SOLAR. Factors were identified that accounted for 73% of the total variance of the original variables: body size-adiposity, insulin-glucose, blood pressure, and lipid levels. Each factor exhibited evidence for either significant or suggestive linkage involving four factor-specific chromosomal regions relating to chromosomes 1, 3, 4, and 6. Significant evidence for linkage of the lipid factor was found on chromosome 4 near marker D4S403 (LOD = 3.52), where the cholecystokinin A receptor (CCKAR) and ADP-ribosyl cyclase 1 (CD38) genes are located. Suggestive evidence for linkage of the body size-adiposity factor to chromosome 1 near marker D1S1597 (LOD = 2.53) in the region containing the nuclear receptor subfamily 0, group B, member 2 gene (NROB2) also was observed. The insulin-glucose and blood pressure factors were linked suggestively to regions on chromosome 3 near marker D3S1595 (LOD = 2.20) and on chromosome 6 near marker D6S 1031 (LOD = 2.08), respectively. In summary, our findings suggest that the factor structures for the risk of metabolic syndrome are influenced by multiple distinct genes across the genome.  相似文献   

8.
The IBD2 locus on chromosome 12 has been linked to both Crohn disease (CD) and ulcerative colitis (UC) but has not been detected in some CD-dominated data sets. In the present study, we genotyped 581 relative pairs with inflammatory bowel disease (252 from CD-only families, 138 from UC-only families, and 191 from mixed families containing cases of both CD and UC), using 12 markers spanning the IBD2 locus. A GENEHUNTER-PLUS multipoint LOD score of 3.91 was detected for pairs from UC-only families, compared with 1.66 for CD-only and 1.29 for mixed families. The difference between the LOD scores for UC and CD was significant in two different tests for heterogeneity (P=.0057 for one test and P=.0375 for the other). IBD2 thus appears to make a major contribution to UC susceptibility but to have only a relatively minor effect with regard to CD, for which there may be substantially more locus heterogeneity.  相似文献   

9.
An increased plasma triglyceride (TG) level is associated with coronary artery disease (CAD) and myocardial infarction (MI) and is a key characteristic of the metabolic syndrome. Here, we used a genome-wide linkage scan to identify a novel genetic locus that influences the plasma TG level. We genotyped 714 persons in 388 multiplex Caucasian families with premature CAD and MI with 408 polymorphic microsatellite markers that cover the entire human genome. The genome-wide scan identified positive linkage for the quantitative TG trait to a novel locus on chromosome 1p31-32 [peak single-point logarithm of odds (LOD) = 3.57, peak multipoint LOD = 3.12]. For single-point linkage analysis, two markers, D1S1728 and D1S551, showed LOD scores of 2.42 and 3.57, respectively. For multipoint linkage analysis, three markers, D1S3736, D1S1728, and D1S551, showed LOD scores of 2.43, 3.03, and 3.12, respectively. No other chromosomal regions showed a LOD score of >2.2. This study identifies a new genetic locus for TG on chromosome 1p31-32. Future studies of the candidate genes at this locus will identify a specific gene influencing the TG, which will provide insights into novel regulatory mechanisms of TG metabolism and may be important for the development of therapies to prevent CAD.  相似文献   

10.
Epidemiological studies have shown that genetic factors contribute to the etiology of the common and serious pregnancy-specific disorder pre-eclampsia (PE)/eclampsia (E). Candidate-gene studies have provided evidence (albeit controversial) of linkage to several genes, including angiotensinogen on 1q42-43 and eNOS on 7q36. A recent medium-density genome scan in Icelandic families identified significant linkage to D2S286 (at 94.05 cM) on chromosome 2p12 and suggestive linkage to D2S321 (at 157.5 cM) on chromosome 2q23. In the present article, the authors report the results of a medium-density genome scan in 34 families, representing 121 affected women, from Australia and New Zealand. Multipoint nonparametric linkage analysis, using the GENEHUNTER-PLUS program, showed suggestive evidence of linkage to chromosome 2 (LOD=2.58), at 144.7 cM, between D2S112 and D2S151, and to chromosome 11q23-24, between D11S925 and D11S4151 (LOD=2.02 at 121.3 cM). Given the limited precision of estimates of the map location of disease-predisposing loci for complex traits, the present finding on chromosome 2 is consistent with the finding from the Icelandic study, and it may represent evidence of the same locus segregating in the population from Australia and New Zealand. The authors propose that the PE/E-linked locus on chromosome 2p should be designated the "PREG1" (pre-eclampsia, eclampsia gene 1) locus.  相似文献   

11.
The hereditary disorders of peripheral nerve form one of the most common groups of human genetic diseases, collectively called Charcot-Marie-Tooth (CMT) neuropathy. Using linkage analysis we have identified a new locus for a form of CMT that we have called "dominant intermediate CMT" (DI-CMT). A genomewide screen using 383 microsatellite markers showed strong linkage to the short arm of chromosome 19 (maximum LOD score 4.3, with a recombination fraction (straight theta) of 0, at D19S221 and maximum LOD score 5.28, straight theta=0, at D19S226). Haplotype analysis performed with 14 additional markers placed the DI-CMT locus within a 16.8-cM region flanked by the markers D19S586 and D19S546. Multipoint linkage analysis suggested the most likely location at D19S226 (maximum multipoint LOD score 6.77), within a 10-cM confidence interval. This study establishes the presence of a locus for DI-CMT on chromosome 19p12-p13.2.  相似文献   

12.
Myoclonus-dystonia (M-D) is an autosomal dominant disorder characterized by myoclonic and dystonic muscle contractions that are often responsive to alcohol. The dopamine D2 receptor gene (DRD2) on chromosome 11q has been implicated in one family with this syndrome, and linkage to a 28-cM region on 7q has been reported in another. We performed genetic studies, using eight additional families with M-D, to assess these two loci. No evidence for linkage was found for 11q markers. However, all eight of these families showed linkage to chromosome 7 markers, with a combined multipoint LOD score of 11.71. Recombination events in the families define the disease gene within a 14-cM interval flanked by D7S2212 and D7S821. These data provide evidence for a major locus for M-D on chromosome 7q21.  相似文献   

13.
Peak bone mineral density (BMD) is a highly heritable trait and is a good predictor of the risk of osteoporosis and fracture in later life. Recent studies have sought to identify the genes underlying peak BMD. Linkage analysis in a sample of 464 premenopausal white sister pairs detected linkage of spine BMD to chromosome 1q (LOD 3.6). An independent sample of 254 white sister pairs has now been genotyped, and it also provides evidence of linkage to chromosome 1q (LOD 2.5) for spine BMD. Microsatellite markers were subsequently genotyped for a 4-cM map in the chromosome 1q region in all available white sister pairs (n=938), and a LOD score of 4.3 was obtained near the marker D1S445. Studies in the mouse have also detected evidence of linkage to BMD phenotypes in the region syntenic to our linkage finding on chromosome 1q. Thus, we have replicated a locus on 1q contributing to BMD at the spine and have found further support for the region in analyses employing an enlarged sample. Studies are now ongoing to identify the gene(s) contributing to peak spine BMD in women.  相似文献   

14.
Several linkage studies have hinted at the existence of an obesity predisposition locus on chromosome 20, but none of these studies has produced conclusive results. Therefore, we analyzed 48 genetic markers on chromosome 20 for linkage to severe obesity (BMI> or =35) in 103 extended Utah pedigrees (1,711 individuals), all of which had strong aggregation of severe obesity. A simple dominant model produced a maximum multipoint heterogeneity LOD score of 3.5 at D20S438 (55.1 cM). Two additional analyses were performed. First, a one-gene, two-mutation model (with one dominant mutation and one recessive mutation) increased the LOD score to 4.2. Second, a two-locus model (with one locus dominant and one recessive) generated a multipoint LOD score of 4.9. We conclude that one or more severe obesity predisposing genes lie within an interval of approx. 10 cM on chromosome 20. This study generated significant LOD scores which confirm suggestive linkage reports from previous studies. In addition, our analyses suggest that the predisposing gene(s) is localized very near the chromosome 20 centromere.  相似文献   

15.
Restless legs syndrome (RLS) is a common neurological condition with three loci (12q, 14q, and 9p) described so far, although none of these genes has yet been identified. We report a genomewide linkage scan of patients with RLS (n=37) assessed in a population isolate (n=530) of South Tyrol (Italy). Using both nonparametric and parametric analyses, we initially obtained suggestive evidence of a novel locus on chromosome 2q, with nominal evidence of linkage on chromosomes 5p and 17p. Follow-up genotyping yielded significant evidence of linkage (nonparametric LOD score 5.5, P相似文献   

16.
Hereditary spastic paraplegias (HSPs), a group of neurodegenerative disorders that cause progressive spasticity of the lower limbs, are characterized by clinical and genetic heterogeneity. To date, three loci for autosomal recessive HSP have been mapped on chromosomes 8p, 16q, and 15q. After exclusion of linkage at these loci, we performed a genomewide search in a consanguineous Italian family with autosomal recessive HSP complicated by mild mental retardation and distal motor neuropathy. Using homozygosity mapping, we obtained positive LOD scores for markers on chromosome region 3q27-q28, with a maximum multipoint LOD score of 3.9 for marker D3S1601. Haplotype analysis allowed us to identify a homozygous region (4.5 cM), flanked by markers D3S1580 and D3S3669, that cosegregates with the disease. These data strongly support the presence, on chromosome 3q27-28, of a new locus for complicated recessive spastic paraplegia, which we have named "SPG14."  相似文献   

17.
Previously we have conducted a genome-wide search for inflammatory bowel disease susceptibility loci in a large European cohort. Results from this study demonstrated suggestive evidence of linkage to loci at chromosomes 1q, 6p, and 10p and replicated linkages on chromosomes 12 and 16. Recently, NOD2/CARD15 on chromosome 16q12 has been found to be strongly associated with Crohn's disease. In order to determine if there are other loci in the genome that interact with the three associated functional variants in CARD15 (R702W, G908R, 1007fs), we have stratified our large inflammatory bowel disease genome scan cohort by dividing pedigrees into two groups stratified by CARD15 variant genotype. The two pedigree groups were analysed using non-parametric allele sharing methods. The group of pedigrees that contained one of the three CARD15 variants had two suggestive linkage results occurring in 6p (lod = 3.06 at D6S197, IBD phenotype) and 10p (lod=2.29 at D10S197, CD phenotype). In addition, at 16q12 where CARD15 is located, the original genome scan had a peak lod score of 2.18 at D16S415 (CD phenotype). The stratified pedigree cohort containing one of three CARD15 variants had a peak lod score of 0.90 at D16S415 (CD phenotype), accounting for approximately less than half of the genetic evidence for linkage at this locus. This result is in agreement with the existence of a substantial number of private variants at the NOD2/CARD15 locus. Interaction with NOD2/CARD15 needs to be considered in future gene identification efforts on chromosomes 6 and 10.  相似文献   

18.
Type 2 diabetes is a serious, genetically influenced disease for which no fully effective treatments are available. Identification of biochemical or regulatory pathways involved in the disease syndrome could lead to innovative therapeutic interventions. One way to identify such pathways is the genetic analysis of families with multiple affected members where disease predisposing genes are likely to be segregating. We undertook a genomewide screen (389-395 microsatellite markers) in samples of 835 white, 591 Mexican American, 229 black, and 128 Japanese American individuals collected as part of the American Diabetes Association's GENNID study. Multipoint nonparametric linkage analyses were performed with diabetes, and diabetes or impaired glucose homeostasis (IH). Linkage to diabetes or IH was detected near markers D5S1404 (map position 77 cM, LOD = 2.80), D12S853 (map position 82 cM, LOD = 2.81) and GATA172D05 (X-chromosome map position 130 cM, LOD = 2.99) in whites, near marker D3S2432 (map position 51 cM, LOD = 3.91) in Mexican Americans, and near marker D10S1412 (map position 14 cM, LOD = 2.39) in African Americans mainly collected in phase 1 of the study. Further analyses showed evidence for interactions between the chromosome 5 locus and region on chromosome 12 containing the MODY 3 gene (map position 132 cM) and between the X-chromosome locus and region near D12S853 (map position 82 cM) in whites. Although these results were not replicated in samples collected in phase 2 of the GENNID study, the region on chromosome 12 was replicated in samples from whites described by Bektas et al. (1999).  相似文献   

19.
Attention-deficit/hyperactivity disorder (ADHD [MIM 143465]) is the most common behavioral disorder of childhood. Twin, adoption, segregation, association, and linkage studies have confirmed that genetics plays a major role in conferring susceptibility to ADHD. We applied model-based and model-free linkage analyses, as well as the pedigree disequilibrium test, to the results of a genomewide scan of extended and multigenerational families with ADHD from a genetic isolate. In these families, ADHD is highly comorbid with conduct and oppositional defiant disorders, as well as with alcohol and tobacco dependence. We found evidence of linkage to markers at chromosomes 4q13.2, 5q33.3, 8q11.23, 11q22, and 17p11 in individual families. Fine mapping applied to these regions resulted in significant linkage in the combined families at chromosomes 4q13.2 (two-point allele-sharing LOD score from LODPAL = 4.44 at D4S3248), 5q33.3 (two-point allele-sharing LOD score from LODPAL = 8.22 at D5S490), 11q22 (two-point allele-sharing LOD score from LODPAL = 5.77 at D11S1998; multipoint nonparametric linkage [NPL]-log[P value] = 5.49 at approximately 128 cM), and 17p11 (multipoint NPL-log [P value] >12 at approximately 12 cM; multipoint maximum location score 2.48 [alpha = 0.10] at approximately 12 cM; two-point allele-sharing LOD score from LODPAL = 3.73 at D17S1159). Additionally, suggestive linkage was found at chromosome 8q11.23 (combined two-point NPL-log [P value] >3.0 at D8S2332). Several of these regions are novel (4q13.2, 5q33.3, and 8q11.23), whereas others replicate already-published loci (11q22 and 17p11). The concordance between results from different analytical methods of linkage and the replication of data between two independent studies suggest that these loci truly harbor ADHD susceptibility genes.  相似文献   

20.
Objective: Interest in mapping genetic variants that are associated with obesity remains high because of the increasing prevalence of obesity and its complications worldwide. Data on genetic determinants of obesity in African populations are rare. Research Methods and Procedures: We have undertaken a genome‐wide scan for body mass index (BMI) in 182 Nigerian families that included 769 individuals. Results: The prevalence of obesity was only 5%, yet polygenic heritability for BMI was in the expected range (0.46 ± 0.07). Tandem repeat markers (402) were typed across the genome with an average map density of 9 cM. Pedigree‐based analysis using a variance components linkage model demonstrated evidence for linkage on chromosome 7 (near marker D7S817 at 7p14) with a logarithm of odds (LOD) score of 3.8 and on chromosome 11 (marker D11S2000 at 11q22) with an LOD score of 3.3. Weaker evidence for linkage was found on chromosomes 1 (1q21, LOD = 2.2) and 8 (8p22, LOD = 2.3). Several candidate genes, including neuropeptide Y, DRD2, APOA4, lamin A/C, and lipoprotein lipase, lie in or close to the chromosomal regions where strong linkage signals were found. Discussion: The findings of this study suggest that, as in other populations with higher prevalences of obesity, positive linkage signals can be found on genome scans for obesity‐related traits. Follow‐up studies may be warranted to investigate these linkages, especially the one on chromosome 11, which has been reported in a population at the opposite end of the BMI distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号