首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Induced pluripotent stem (iPS) cells established by introduction of the transgenes POU5F1 (also known as Oct3/4), SOX2, KLF4 and c-MYC have competence similar to embryonic stem (ES) cells. iPS cells generated from cynomolgus monkey somatic cells by using genes taken from the same species would be a particularly important resource, since various biomedical investigations, including studies on the safety and efficacy of drugs, medical technology development, and research resource development, have been performed using cynomolgus monkeys. In addition, the use of xenogeneic genes would cause complicating matters such as immune responses when they are expressed. In this study, therefore, we established iPS cells by infecting cells from the fetal liver and newborn skin with amphotropic retroviral vectors containing cDNAs for the cynomolgus monkey genes of POU5F1, SOX2, KLF4 and c-MYC. Flat colonies consisting of cells with large nuclei, similar to those in other primate ES cell lines, appeared and were stably maintained. These cell lines had normal chromosome numbers, expressed pluripotency markers and formed teratomas. We thus generated cynomolgus monkey iPS cell lines without the introduction of ecotropic retroviral receptors or other additional transgenes by using the four allogeneic transgenes. This may enable detailed analysis of the mechanisms underlying the reprogramming. In conclusion, we showed that iPS cells could be derived from cynomolgus monkey somatic cells. To the best of our knowledge, this is the first report on iPS cell lines established from cynomolgus monkey somatic cells by using genes from the same species.  相似文献   

2.
Embryonic stem (ES) cells have great therapeutic potential because of their capacity to proliferate extensively and to form any fully differentiated cell of the body, including skeletal muscle cells. Successful generation of skeletal muscle in vivo, however, requires selective induction of the skeletal muscle lineage in cultures of ES cells and following transplantation, integration of appropriately differentiated skeletal muscle cells with recipient muscle. Duchenne muscular dystrophy (DMD), a severe progressive muscle wasting disease due to a mutation in the dystrophin gene and the mdx mouse, an animal model for DMD, are characterized by the absence of the muscle membrane associated protein, dystrophin. Here, we show that co-culturing mouse ES cells with a preparation from mouse muscle enriched for myogenic stem and precursor cells, followed by injection into mdx mice, results occasionally in the formation of normal, vascularized skeletal muscle derived from the transplanted ES cells. Study of this phenomenon should provide valuable insights into skeletal muscle development in vivo from transplanted ES cells.  相似文献   

3.
Generation of insulin-expressing cells from mouse embryonic stem cells   总被引:6,自引:0,他引:6  
The therapeutic potential of transplantation of insulin-secreting pancreatic beta-cells has stimulated interest in using pluripotent embryonic stem (ES) cells as a starting material from which to generate insulin secreting cells in vitro. Mature beta-cells are endodermal in origin so most reported differentiation protocols rely on the identification of endoderm-specific markers. However, endoderm development is an early event in embryogenesis that produces cells destined for the gut and associated organs in the embryo, and for the development of extra-embryonic structures such as the yolk sac. We have demonstrated that mouse ES cells readily differentiate into extra-embryonic endoderm in vitro, and that these cell populations express the insulin gene and other functional elements associated with beta-cells. We suggest that the insulin-expressing cells generated in this and other studies are not authentic pancreatic beta-cells, but may be of extra-embryonic endodermal origin.  相似文献   

4.
5.
Embryonic stem cells (ESCs) are pluripotent cells capable of differentiating into all somatic and germ cell types. The intrinsic ability of pluripotent cells to generate a vast array of different cells makes ESCs a robust resource for a variety of cell transplantation and tissue engineering applications, however, efficient and controlled means of directing ESC differentiation is essential for the development of regenerative therapies. ESCs are commonly differentiated in vitro by spontaneously self‐assembling in suspension culture into 3D cell aggregates called embryoid bodies (EBs), which mimic many of the hallmarks of early embryonic development, yet the 3D organization and structure of EBs also presents unique challenges to effectively direct the differentiation of the cells. ESC differentiation is strongly influenced by physical and chemical signals comprising the local extracellular microenvironment, thus current methods to engineer EB differentiation have focused primarily on spatially controlling EB size, adding soluble factors to the media, or culturing EBs on or within natural or synthetic extracellular matrices. Although most such strategies aim to influence differentiation from the exterior of EBs, engineering the microenvironment directly within EBs enables new opportunities to efficiently direct the fate of the cells by locally controlling the presentation of morphogenic cues. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

6.
ABSTRACT

Embryonic stem cells (ESCs) derived from outbred mice which share several genetic characteristics similar to humans have been requested for developing stem cell-based bioengineering techniques directly applicable to humans. Here, we report the generation of ESCs derived from the inner cell mass of blastocysts retrieved from 9-week-old female outbred ICR mice mated with 9-week-old male outbred ICR mice (ICRESCs). Similar to those from 129/Ola mouse blastocysts (E14ESCs), the established ICRESCs showed inherent characteristics of ESCs except for partial and weak protein expression and activity of alkaline phosphatase. Moreover, ICRESCs were not originated from embryonic germ cells or pluripotent cells that may co-exist in outbred ICR strain-derived mouse embryonic fibroblasts (ICRMEFs) used for deriving colonies from inner cell mass of outbred ICR mouse blastocysts. Furthermore, instead of outbred ICRMEFs, hybrid B6CBAF1MEFs as feeder cells could sufficiently support in vitro maintenance of ICRESC self-renewal. Additionally, ICRESC-specific characteristics (self-renewal, pluripotency, and chromosomal normality) were observed in ICRESCs cultured for 40th subpassages (164 days) on B6CBAF1MEFs without any alterations. These results confirmed the successful establishment of ESCs derived from outbred ICR mice, and indicated that self-renewal and pluripotency of the established ICRESCs could be maintained on B6CBAF1MEFs in culture.  相似文献   

7.
The formation of embryoid bodies (EBs) is the principal step in the differentiation of embryonic stem (ES) cells. In this study, the morphological characteristics and gene expression patterns of EBs related to the sequential stages of embryonic development were well defined in four distinct developmental groups over 112 days of culture: early-stage EBs groups (1–7 days of differentiation), mid-stage EBs groups (9–15 days of differentiation), maturing EBs groups (17–45 days of differentiation) and matured EBs groups (50 days of differentiation). We first determined definite histological location of apoptosis within EBs and the sequential expression of molecular markers representing stem cells (Oct4, SSEA-1, Sox-2 and AKP), germ cells (Fragilis, Dazl, c-kit, StellaR, Mvh and Stra8), ectoderm (Neurod, Nestin and Neurofilament), mesoderm (Gata-1, Flk-1 and Hbb) and endoderm (AFP and Transthyretin). Our results revealed that developing EBs possess either pluripotent stem cell or germ cell states and that three-dimensional aggregates of EBs initiate mES cell differentiation during prolonged culture in vitro. Therefore, we suggest that this EB system to some extent recapitulates the early developmental processes occurring in vivo.  相似文献   

8.
BackgroundCell fusion is a phenomenon that is observed in various tissues in vivo, resulting in acquisition of physiological functions such as liver regeneration. Fused cells such as hybridomas have also been produced artificially in vitro. Furthermore, it has been reported that cellular reprogramming can be induced by cell fusion with stem cells.MethodsFused cells between mammalian fibroblasts and mouse embryonic stem cells were produced by electrofusion methods. The phenotypes of each cell lines were analyzed after purifying the fused cells.ResultsColonies which are morphologically similar to mouse embryonic stem cells were observed in fused cells of rabbit, bovine, and zebra fibroblasts. RT-PCR analysis revealed that specific pluripotent marker genes that were never expressed in each mammalian fibroblast were strongly induced in the fused cells, which indicated that fusion with mouse embryonic stem cells can trigger reprogramming and acquisition of pluripotency in various mammalian somatic cells.ConclusionsOur results can help elucidate the mechanism of pluripotency maintenance and the establishment of highly reprogrammed pluripotent stem cells in various mammalian species.  相似文献   

9.
10.
Ten primary clones of hybrid cells were produced by the fusion of diploid embryonic stem (ES) cells, viz., line E14Tg2aSc4TP6.3 marked by green fluorescent protein (GFP), with diploid embryonic or adult fibroblasts derived from DD/c mice. All the hybrid clones had many characteristics similar to those of ES cells and were positive for GFP. Five hybrid clones having ploidy close to tetraploidy (over 80% of cells had 76–80 chromosomes) were chosen for the generation of chimeras via injection into C57BL blastocysts. These hybrid clones also contained microsatellites marking all ES cell and fibroblast chromosomes judging from microsatellite analysis. Twenty chimeric embryos at 11–13 days post-conception were obtained after injection of hybrid cells derived from two of three clones. Many embryos showed a high content of GFP-positive descendents of the tested hybrid cells. Twenty one adult chimeras were generated by the injection of hybrid cells derived from three clones. The contribution of GFP-labeled hybrid cells was significant and comparable with that of diploid E14Tg2aSc4TP6.3 cells. Cytogenetic and microsatellite analyses of cell cultures derived from chimeric embryos or adults indicated that the initial karyotype of the tested hybrid cells remained stable during the development of the chimeras, i.e., the hybrid cells were mainly responsible for the generation of the chimeras. Thus, ES cell/fibroblast hybrid cells with near-tetraploid karyotype are able to generate chimeras at a high rate, and many adult chimeras contain a high percentage of descendants of the hybrid cells. A. A. Kruglova and E. A. Kizilova contributed equally to this work. This study was financially supported by grants from the Russian Academy of Sciences, Siberian Branch 5.2 and 14.0.  相似文献   

11.
12.
In a search for functions of transforming growth factor-β during early embryonic development we used two different experimental approaches. In the first we made use of embryonic stem (ES) cells. ES cells in culture differentiate to derivatives of all three germ layers and mimic some aspects of organogenesis when grown as aggregates in suspension to form embryoid bodies. Differentiation procedes further when the embryold bodies attach to suitable substrates. Muscle and neuronal cells are among the most readily identified cell types then formed. We examined the effect of all-trans retinoic acid (RA) and members of the transforming growth factor-β family(TGF-βl, TGF-β2) under these conditions in an assay where single aggregates formed in hanging microdrops in medium supplemented with serum depleted of lipophilic substances which would include retinoids. Endoderm-like cells formed under all conditions tested. RA at concentrations of 108 M and 107 M induced the formation of neurons but in the absence of RA or at concentrations up to 10?9 M, neurons were not observed. Instead, beating muscle formed in about one-third of the plated aggregates; this was greatly reduced when RA concentrations increased above 10?9 M. Immunofluorescent staining for muscle specific myosin showed that two muscle cell types could be distinguished: elongated, non-contractile myoblasts and mononucleate flat cells. The mononucleate flat cells appeared to correspond with rhythmically contracting muscle. The number of non-contractile myoblasts increased 3-fold over controls in the presence of 10?9 M RA. TGF-βs increased the number of contractile and non-contractile muscle cells by a factor 3 to 7 over controls, depending on the TGF-β isoform added and the muscle cell type formed. TGF-β2 also invariably increased the rate at which contracting muscle cells were first observed in replated aggregates. The stimulatory effect of TGF-βs on the formation of mononucleate flat cells was completely abrogated by RA at 10?9 M while the number of myoblasts under similar conditions was unchanged. These data suggest that a complex interplay between retinoids and TGF-β isoforms may be involved in regulation of differentiation in early myogenesis. In the second approach, neutralizing polyclonal rabbit antibodies specific for TGF-β2 were injected into the cavity of mouse blastocysts 3.5 days post coitum (pc). After 1 day in culture, embryos were transferred to pseudopregnant females. The number of decidua, embryos and resorptions were counted at day 8.5–9.5 pc. Control antibody injected embryos implanted with high efficiency (87%) compared with anti-TGF-β2 injected embryos which implanted with an efficiency of only 43%. If empty decidua (resorptions) were included, the overall recovery was 71% and 32% for control and experimental embryos, respectively. Embryos that were recovered showed no overt macroscopic abnormalities. These results together impiy functions for TGF-βs in implantation as well as in later development of the embryo. © 1993Wiley-Liss, Inc.  相似文献   

13.
14.
Ten embryonic stem (ES) cell lines from mink blastocysts were isolated and characterized. All the lines had a normal diploid karyotype; of the ten lines studied, five had the XX and five had the XY constitution. Testing of the pluripotency of the ES-like cells demonstrated that 1) among four lines of genotype XX, and X was late-replicating in three; both Xs were active in about one-third of cells of line MES8, and analysis of glucose-6-phosphate dehydrogenase revealed no dosage compensation for the X-linked gene; 2) when cultured in suspension, the majority of lines were capable of forming "simple" embryoid bodies (EB), and two only showed the capacity for forming "cystic" multilayer EBs. However, formation of ectoderm or foci of yolk sac hematopoiesis, a feature of mouse ES cells, was not observed in the "cystic" EB; 3) when cultured as a monolayer without feeder, the ES cells differentiated into either vimentin-positive fibroblast-like cells or cytokeratin-positive epithelial-like cells (less frequently); neural cells appeared in two lines; 4) when injected into athymic mice, only one of the four tested lines gave rise to tumors. These were fibrosarcomas composed of fibroblast-like cells, with an admixture of smooth muscular elements and stray islets of epithelial tissue; (5) when the ES cells of line MES1 were injected into 102 blastocyst cavities and subsequently transplanted into foster mothers, we obtained 30 offspring. Analysis of the biochemical markers and coat color did not demonstrate the presence of chimaeras among offspring. Thus the cell lines derived from mink blastocysts are true ES cells. However, their pluripotential capacities are restricted.  相似文献   

15.
In mice, gene targeting by homologous recombination continues to play an essential role in the understanding of functional genomics. This strategy allows precise location of the site of transgene integration and is most commonly used to ablate gene expression (knock-out), or to introduce mutant or modified alleles at the locus of interest (knock-in). The efficacy of producing live, transgenic mice challenges our understanding of this complex process, and of the factors which influence germline competence of embryonic stem cell lines. Increasingly, evidence indicates that culture conditions and in vitro manipulation can affect the germline-competence of Embryonic Stem cell (ES cell) lines by accumulation of chromosome abnormalities and/or epigenetic alterations of the ES cell genome. The effectiveness of ES cell derivation is greatly strain-dependent and it may also influence the germline transmission capability. Recent technical improvements in the production of germline chimeras have been focused on means of generating ES cells lines with a higher germline potential. There are a number of options for generating chimeras from ES cells (ES chimera mice); however, each method has its advantages and disadvantages. Recent developments in induced pluripotent stem (iPS) cell technology have opened new avenues for generation of animals from genetically modified somatic cells by means of chimera technologies. The aim of this review is to give a brief account of how the factors mentioned above are influencing the germline transmission capacity and the developmental potential of mouse pluripotent stem cell lines. The most recent methods for generating specifically ES and iPS chimera mice, including the advantages and disadvantages of each method are also discussed.  相似文献   

16.
Human embryonic stem cells (hESCs) have the potential to provide alternative sources for pancreatic islet grafts. In the present study we have investigated the influence of Activin A and Activin B on the expression of the pancreas marker gene Pdx1 in hESCs differentiated as embryoid bodies (EBs). We report here that Activin B in a dose depend manner markedly up-regulates Pdx1 expression as compared to Activin A and untreated cultures. Pdx1(+) cells co-express FOXA2 but lacks, however, co-expression with nkx6.1, a marker combination that in the present study is shown precisely to identify embryonic and fetal pancreas anlage in humans. Pdx1(+) cells are found in cell clusters also expressing Serpina1 and FABP1, suggesting activation of intestinal/liver developmental programs. Moreover, Activin B up-regulates Sonic Hedgehog (Shh) and its target Gli1, which during normal development is suppressed in the pancreatic anlage. In conclusion, Activin B is a potent inducer of Pdx1 as well as Shh in differentiating hESCs. The data suggest that additional suppression of Shh signaling may be required to allow for proper specification of pancreatic cell lineages in hESCs.  相似文献   

17.
Jin LF  Ji SH  Yang JF  Ji WZ 《动物学研究》2011,32(4):391-395
猕猴胚胎干细胞(rhesus monkey embryonic stem(rES))与人胚胎干细胞有相似的生物学特性,因此是理想的临床前研究的替代模型。Notch信号通路在胆管及胆管上皮细胞的形成中有重要的作用,然而,有关Notch信号通路在ES细胞的胆向分化中的作用了解甚少。该实验以rES为模型,对Notch信号通路对ES细胞的胆向分化过程中的作用进行了较为系统的研究。rES在细胞因子ActivinA诱导作用下产生约80%的限定性内胚层细胞。以Matrigel作为细胞外基质,在含BMP4和FGF1的无血清培养体系中继续诱导5~7d,rES细胞来源的限定性内胚层细胞分化产生约胆管样细胞。分化的细胞表达胆管细胞的特异性蛋白((CK7、CK18、CK19、CK20和OV-6)及基因(GSTPi、IB4和HNF1β)。在胆管样细胞的分化过程中检测到了Notch1和Notch2基因及下游信号分子hes1和hes5的表达。用Notch抑制剂L-685458处理分化过程中的细胞可导致Notch1和Notch2基因及下游信号分子hes1和hes5的表达下降,同时CK19阳性的胆管样细胞分化比率也从90%下降至约20%。这一...  相似文献   

18.
19.
Homologous recombination makes use of sequence homology to repair DNA and to rearrange genetic material. In mammals, these processes have mainly been characterized using cultured cell systems. We have developed an assay that allows us to quantitatively analyze homologous recombination in vivo in the mouse embryo. Transgenic mouse lines were generated by microinjection into a fertilized mouse ovum of a vector containing two homologous LINE-1 (L1) sequences arranged as a direct repeat: these sequences can recombine with each other and with endogenous L1 sequences before, during or after integration of the vector into the genome. Using a plasmid rescue procedure, we determined the composition of the integrated vector array in several transgenic mice and their descendants. Homologous recombination frequencies were found to be strikingly high, involving 70% of integrated vectors in some arrays, with homologous deletions being five times more frequent than gene conversion without crossing-over. Interestingly, non-homologous recombination was found to be much less frequent. We also found that endogenous L1 sequences could be involved in homologous recombination events in the mouse embryo, and that the integrated arrays could be modified from generation to generation by homologous recombination between the integrated L1 sequences.  相似文献   

20.
Embryonic stem (ES) cells have the ability to differentiate into all germ layers, holding great promise not only for a model of early embryonic development but also for a robust cell source for cell-replacement therapies and for drug screening. Embryoid body (EB) formation from ES cells is a common method for producing different cell lineages for further applications. However, conventional techniques such as hanging drop or static suspension culture are either inherently incapable of large scale production or exhibit limited control over cell aggregation during EB formation and subsequent EB aggregation. For standardized mass EB production, a well defined scale-up platform is necessary. Recently, novel scenario methods of EB formation in hydrodynamic conditions created by bioreactor culture systems using stirred suspension systems (spinner flasks), rotating cell culture system and rotary orbital culture have allowed large-scale EB formation. Their use allows for continuous monitoring and control of the physical and chemical environment which is difficult to achieve by traditional methods. This review summarizes the current state of production of EBs derived from pluripotent cells in various culture systems. Furthermore, an overview of high quality EB formation strategies coupled with systems for in vitro differentiation into various cell types to be applied in cell replacement therapy is provided in this review. Recently, new insights in induced pluripotent stem (iPS) cell technology showed that differentiation and lineage commitment are not irreversible processes and this has opened new avenues in stem cell research. These cells are equivalent to ES cells in terms of both self-renewal and differentiation capacity. Hence, culture systems for expansion and differentiation of iPS cells can also apply methodologies developed with ES cells, although direct evidence of their use for iPS cells is still limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号