首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The role and interdependence of CD8+ and CD4+ alpha beta-T cells in the acute response after respiratory infection with the murine parainfluenza type 1 virus, Sendai virus, has been analyzed for H-2b mice. Enrichment of CD8+ virus-specific CTL effectors in the lungs of immunologically intact C57BL/6 animals coincided with the clearance of the virus from this site by day 10 after infection. Removal of the CD4+ T cells by in vivo mAb treatment did not affect appreciably either the recruitment of CD8+ T cells to the infected lung, or their development into virus-specific cytotoxic effectors. In contrast, depletion of the CD8+ subset delayed virus clearance, although most mice survived the infection. Transgenic H-2b F3 mice homozygous (-/-) for a beta 2 microglobulin (beta 2-m) gene disruption, which lack both class I MHC glycoproteins and mature CD8+ alpha beta-T cells, showed a comparable, delayed clearance of Sendai virus from the lung. Virus-specific, class II MHC-restricted CTL were demonstrated in both freshly isolated bronchoalveolar lavage populations and cultured lymph node and spleen tissue from the beta 2-m (-/-) transgenics. Treatment of the beta 2-m (-/-) mice with the mAb to CD4 led to delayed virus clearance and death, which was also the case for normal mice that were depleted simultaneously of the CD4+ and CD8+ subsets. These results indicate that, although classical class I MHC-restricted CD8+ cytotoxic T cells normally play a dominant role in the recovery of mice acutely infected with Sendai virus, alternative mechanisms involving CD4+ T cells exist and can compensate, in time, for the loss of CD8+ T cell function.  相似文献   

2.
D Chen  F Lee  J J Cebra    D H Rubin 《Journal of virology》1997,71(5):3431-3436
Previous studies have found that intraepithelial lymphocytes (IEL) contain virus-specific cytotoxic T lymphocytes (CTL) that increase dramatically during the course of virus infection. In the present study, the T-cell receptor (TCR) V beta pattern used by IEL against reovirus enteric infection was investigated both in conventional and in germfree mice. IEL were isolated by a modified rapid method, and their expression of 13 TCR V betas was examined by flow cytometric analysis. The virus-specific CTL activity of each TCR V beta subset was assessed by subtraction with coated Dyna beads by a nonradioactive assay. There was a preferential perturbation of TCR V betas following virus challenge, including increases in cells expressing V beta7, -12, -14, and -17 in conventional mice and V beta2, -12, and -17 in germfree mice. In conventionally reared mice, IEL maintained and restimulated in culture had a preferential use of TCR V beta9, -12, and -17. TCR V beta2 and -17 subfamilies were found amplified in all conditions. Furthermore, TCR V beta12 and -17 accounted for 37 and 77% of the virus-specific CTL activity, respectively, after in vitro restimulation. This study provides evidence that virus-specific CTL activity may be due to the oligoclonal expansion of TCR V beta subfamilies in IEL. Our findings suggest that in vivo infection selectively presents few T-cell epitopes and that the correct identification of these T-cell epitopes would increase the likelihood of success when designing subunit vaccines.  相似文献   

3.
In this study, we have examined the relative contributions of CD4+ and CD8+ T cells in controlling an acute or chronic lymphocytic choriomeningitis virus (LCMV) infection. To study acute infection, we used the LCMV Armstrong strain, which is cleared by adult mice in 8 to 10 days, and to analyze chronic infection, we used a panel of lymphocyte-tropic and macrophage-tropic variants of LCMV that persist in adult mice for several months. We show that CD4+ T cells are not necessary for resolving an acute LCMV infection. CD4+ T-cell-depleted mice were capable of generating an LCMV-specific CD8+ cytotoxic T-lymphocyte (CTL) response and eliminated virus with kinetics similar to those for control mice. The CD8+ CTL response was critical for resolving this infection, since beta 2-microglobulin knockout (CD8-deficient) mice were unable to control the LCMV Armstrong infection and became persistently infected. In striking contrast to the acute infection, even a transient depletion of CD4+ T cells profoundly affected the outcome of infection with the macrophage- and lymphocyte-tropic LCMV variants. Adult mice given a single injection of anti-CD4 monoclonal antibody (GK1.5) at the time of virus challenge became lifelong carriers with high levels of virus in most tissues. Unmanipulated adult mice infected with the different LCMV variants contained virus for prolonged periods (> 3 months) but eventually eliminated infection from most tissues, and all of these mice had LCMV-specific CD8+ CTL responses. Although the level of CTL activity was quite low, it was consistently present in all of the chronically infected mice that eventually resolved the infection. These results clearly show that even in the presence of an overwhelming viral infection of the immune system, CD8+ CTL can remain active for long periods and eventually resolve and/or keep the virus infection in check. In contrast, LCMV-specific CTL responses were completely lost in chronically infected CD4-depleted mice. Taken together, these results show that CD4+ T cells are dispensable for short-term acute infection in which CD8+ CTL activity does not need to be sustained for more than 2 weeks. However, under conditions of chronic infection, in which CD8+ CTLs take several months or longer to clear the infection, CD4+ T-cell function is critical. Thus, CD4+ T cells play an important role in sustaining virus-specific CD8+ CTL during chronic LCMV infection. These findings have implications for chronic viral infections in general and may provide a possible explanation for the loss of human immunodeficiency virus-specific CD8+ CTL activity that is seen during the late stages of AIDS, when CD4+ T cells become limiting.  相似文献   

4.
It is well established that the route of infection affects the nature of the adaptive immune response. However, little is known about the effects of the route of exposure on development of cytotoxic T-lymphocyte (CTL) responses. Alternative antigen-presenting cell populations, tissue-restricted expression of class I major histocompatibility complex-encoded molecules, and unique T-cell receptor (TCR)-bearing cells in mucosal tissues could influence the selection and expansion of responder T cells. This study addresses the question of whether the route of virus infection affects the selection and expansion of subpopulations of virus-specific CTLs. Mice were infected orally or in the hind footpads with reovirus, and the repertoires of TCR beta-chains expressed on virus-specific CD8(+) T cells in Peyer's patches or lymph nodes and spleens were examined. CD8(+) cells expressing the variable gene segment of the TCR beta-chain 6 (Vbeta6) expanded in the spleens of mice infected by either route and in CTL lines established from the spleens and draining lymphoid tissues. Adoptively transferred Vbeta6(+) CD8(+) T cells from orally or parenterally infected donors expanded in reovirus-infected severe combined immunodeficient recipient mice and mediated cytotoxicity ex vivo. Furthermore, recovered Vbeta6(+) cells were enriched for clones utilizing uniform complementarity-determining region 3 (CDR3) lengths. However, sequencing of CDR3beta regions from Vbeta6(+) CD8(+) cells indicated that Jbeta gene segment usage is significantly more restricted in CTLs from orally infected mice, suggesting that the route of infection affects selection and/or subsequent expansion of virus-specific CTLs.  相似文献   

5.
Neutrophils have an important role in early host protection during influenza A virus infection. Their ability to modulate the virus-specific adaptive immune response is less clear. Here, we have used a mouse model to examine the impact of neutrophils on CD8(+) T-cell responses during influenza virus infection. CD8(+) T-cell priming, expansion, migration, cytokine secretion and cytotoxic capacity were investigated in the virus-infected airways and secondary lymphoid organs. To do this, we utilised a Ly6G-specific monoclonal antibody (mAb; 1A8) that specifically depletes neutrophils in vivo. Neutrophil depletion early after infection with influenza virus strain HKx31 (H3N2) did not alter influenza virus-derived antigen presentation or na?ve CD8(+) T-cell expansion in the secondary lymphoid organs. Trafficking of virus-specific CD8(+) T cells into the infected pulmonary airways was also unaltered. Instead, early neutropenia reduced both the overall magnitude of influenza virus-specific CD8(+) T cells, together with impaired cytokine production and cytotoxic effector function. Therefore, neutrophils are important participants in anti-viral mechanisms that sustain effective CD8(+) T-cell responses in the respiratory tract of influenza virus-infected mice.  相似文献   

6.
To study T cell tolerance, transgenic mice were generated that expressed the Mlsa-reactive T cell receptor (TCR) beta chain V beta 8.1 (cDNA) under the control of the H-2Kb promoter/immunoglobulin heavy chain enhancer on approximately 90% of peripheral T cells. In transgenic mice bearing Mlsa, thymocytes expressing the TCR at a high density were deleted and the percentage of Thy 1.2+ lymph node cells was reduced. The CD4/CD8 ratio of mature T cells was reversed in Mlsa and Mlsb transgenic mice independent of the H-2. RNA analysis and immunofluorescence with TCR V beta-specific antibodies revealed that expression of endogenous TCR beta genes was suppressed. Both Mlsa and Mlsb TCR beta chain transgenic mice mounted a T-cell-dependent IgG response against viral antigens, whereas the capacity to generate alloreactive and virus-specific cytotoxic T cells was impaired in TCR beta chain transgenic Mlsa, but not in transgenic Mlsb mice.  相似文献   

7.
R Ahmed  L D Butler    L Bhatti 《Journal of virology》1988,62(6):2102-2106
This study documents the differential requirements of T4+ T helper cells in the induction of virus-specific cytotoxic T-lymphocyte (CTL) and antibody responses during acute lymphocytic choriomeningitis virus infection. Two monoclonal antibodies (GK1.5 and RL172.4) directed against the L3T4 (T4) molecule were used for depleting T helper cells from mice. Depletion of T4+ cells caused a pronounced suppression of antiviral antibody response (20-fold decrease) but had minimal effect on virus-specific CTL response (less than 2-fold reduction). Despite the elimination of greater than 90% of T helper cells, anti-L3T4-treated mice were able to generate a CTL response of sufficient magnitude to control the viral infection. In contrast, depletion of Lyt2+ T cells abrogated the CTL response and the ability to eliminate virus. Thus, our results underscore the importance of the Lyt2+ T-cell subset in controlling infection with this virus and show that a deficiency of T4+ T cells is likely to have a more severe effect on antibody production than on CTL responses.  相似文献   

8.
Proinflammatory cytokines secreted by memory CD8+ and CD4+ T cells are thought to play a direct role in the pathogenesis of dengue virus infection by increasing vascular permeability and thereby inducing the pathophysiologic events associated with dengue hemorrhagic fever and dengue shock syndrome. Severe disease is frequently observed in the setting of secondary infection with heterologous dengue virus serotypes, suggesting a role for cross-reactive memory T cells in the immunopathogenesis of severe disease. We used a large panel of well-characterized dengue virus-specific CD8+ T-cell clones isolated from Pacific Islanders previously infected with dengue virus 1 to examine effector memory function, focusing on a novel dominant HLA-B*5502-restricted NS5(329-337) epitope, and assessed T-cell responses to stimulation with variant peptides representing heterologous serotypes. Variant peptides were differentially recognized by dengue virus 1-specific effector CD8+ cytotoxic T lymphocytes (CTL) in a heterogeneous and clone-specific manner, in which cytolytic function and cytokine secretion could be enhanced, diminished, or abrogated compared with cognate peptide stimulation. Dengue virus-specific CTL stimulated with cognate and variant peptides demonstrated a cytokine response hierarchy of gamma IFN (IFN-gamma) > tumor necrosis factor alpha (TNF-alpha) > interleukin-2 (IL-2), and a subset of clones also produced IL-4 and IL-6. Individual clones demonstrated greater avidity for variant peptides representing heterologous serotypes, including serotypes previously encountered by the subject, and IFN-gamma and TNF-alpha secretion was enhanced by stimulation with these heterologous peptides. Altered antiviral T-cell responses in response to stimulation with heterologous dengue virus serotypes have implications for control of virus replication and for disease pathogenesis.  相似文献   

9.
C57BL/6 (B6, H-2b) mice are CTL responders to both Sendai virus and Moloney leukemia virus. In the former response the H-2Kb class I MHC molecule is used as CTL restriction element, in the latter response the H-2Db molecule. B6 dendritic cells (DC) are superior in the presentation of Sendai virus Ag to CTL in comparison with B6 normal spleen cells. Con A blasts have even less capacity to present viral Ag than NSC, and LPS blasts show an intermediate capacity to present viral Ag. H-2Kb mutant bm1 mice do not generate a CTL response to Sendai virus, but respond to Moloney leukemia virus, as demonstrated by undetectable CTL precursors to Sendai virus and a normal CTL precursor frequency to Moloney virus. Compared to B6 mice, other H-2Kb mutant mice show decreased Sendai virus-specific CTL precursor frequencies in a hierarchy reflecting the response in bulk culture. The Sendai virus-specific CTL response defect of bm1 mice was not restored by highly potent Sendai virus-infected DC as APC for in vivo priming and/or in vitro restimulation. In mirror image to H-2Kb mutant bm1 mice, H-2Db mutant bm14 mice do not generate a CTL response to Moloney virus, but respond normally to Sendai virus. This specific CTL response defect was restored by syngeneic Moloney virus-infected DC for in vitro restimulation. This response was Kb restricted indicating that the Dbm14 molecule remained largely defective and that a dormant Kb repertoire was aroused after optimal Ag presentation by DC. In conclusion, DC very effectively present viral Ag to CTL. However, their capacity to restore MHC class I determined specific CTL response defects probably requires at least some ability of a particular MHC class I/virus combination to associate and thus form an immunogenic complex.  相似文献   

10.
CD8(+) cytotoxic T lymphocytes (CTLs) generated by immunization with allogeneic cells or viral infection are able to lyse allogeneic or virally infected in vitro cells (e.g., lymphoma and mastocytoma). In contrast, it is reported that CD8(+) T cells are not essential for allograft rejection (e.g., heart and skin), and that clearance of influenza or the Sendai virus from virus-infected respiratory epithelium is normal or only slightly delayed after a primary viral challenge of CD8-knockout mice. To address this controversy, we generated H-2(d)-specific CD8(+) CTLs by a mixed lymphocyte culture and examined the susceptibility of a panel of H-2(d) cells to CTL lysis. KLN205 squamous cell carcinoma, Meth A fibrosarcoma, and BALB/c skin components were found to be resistant to CTL-mediated lysis. This resistance did not appear to be related to a reduced expression of MHC class I molecules, and all these cells could block the recognition of H-2(d) targets by CTLs in cold target inhibition assays. We extended our observation by persistently infecting the same panel of cell lines with defective-interfering Sendai virus particles. The Meth A and KLN205 lines infected with a variant Sendai virus were resistant to lysis by Sendai virus-specific CTLs. The Sendai virus-infected Meth A and KLN205 lines were able to block the lysis of Sendai virus-infected targets by CTLs in cold target inhibition assays. Taken together, these results suggest that not all in vivo tissues may be sensitive to CTL lysis.  相似文献   

11.
T cell-mediated protection against a recombinant vaccinia virus was evaluated in mice with respect to the relative contributions of CTL vs that of T cell-dependent IL and of CD4+ cells. H-2b mice primed with the wildtype of vesicular stomatitis virus serotype Indiana (VSV-IND wt) mount an in vitro measurable cytotoxic response against the nucleoprotein (NP) of VSV-IND and are protected against a challenge infection with a vaccinia-VSV recombinant virus expressing the NP of VSV-IND (vacc-IND-NP). Their protective mechanism was highly susceptible to in vivo depletion of CD8+ T cells, but resistant to CD4+ depletion or treatment with anti-IFN-gamma and anti-TNF-alpha. Surprisingly, also VSV-CTL nonresponder H-2k mice were protected against a challenging infection with vacc-IND-NP when primed with VSV-IND wt. In contrast to the CTL responder H-2b mice, this protection was highly susceptible to CD4+ T cell depletion and to anti-IFN-gamma or anti-TNF-alpha treatment, but resistant to CD8+ T cell depletion. Antibodies were not responsible because they failed to transfer protection; in contrast CD4+ T cells conferred significant protection. VSV-CTL responder H-2b and nonresponder H-2k mice were protected almost equally well against a challenge dose of 10(3) pfu vacc-IND-NP inoculated intracerebrally. However, after intracerebral challenge with 5 x 10(6) pfu vacc-IND-NP, the CTL nonresponder mice died, whereas the CTL responder mice eliminated the virus by day 5. These results collectively show that CD4+ T cell-dependent IL may mediate antiviral protection, but their efficiency is relatively weak compared with CD8-mediated protection correlating with cytotoxic activity in vitro.  相似文献   

12.
During HIV infection, CD8+ T cells lacking the costimulatory molecule CD28 increase in number and proportion. This accumulation is associated with disease activity and possibly with CD8+ T-cell dysfunction. In this study, CD8+CD28+ and CD8+CD28- T cells from 41 HIV-infected individuals at various stages of disease were compared in terms of HIV-specific cytotoxicity, TCR beta V repertoire diversity, and cytokine production. We found that the CD28 phenotype of anti-HIV CTL evolves in parallel with disease progression and disease activity. Absolute numbers of CD4+ T cells and CD4+/CD8+ T-cell ratios progressively decreased in 3 groups with an increasing prevalence of CD28- HIV-specific CTL. Conversely, HIV replication levels progressively increased in parallel with the prevalence of CD28- HIV-specific CTL. Repertoire diversity at the level of TCR beta V gene family expression was maintained at normal levels for both CD28+ and CD28- T cells at all stages of infection. Diversity at the level of junctional length polymorphism was more restricted in the CD8+CD28- T-cell population, but this difference remained relatively constant through different stages of infection. Both CD28+ and CD28- T cells produced IL-2 and IFN-gamma, regardless of disease stage and/or the predominant CD28 phenotype of anti-HIV CTL.  相似文献   

13.

Background

A subset of the virus-specific CD8+ cytotoxic T lymphocytes (CTL) isolated from the lungs of mice infected with human respiratory syncytial virus (RSV) is impaired in the ability to secrete interferon γ (IFNγ), a measure of functionality. It was suggested that the impairment specifically suppressed the host cellular immune response, a finding that could help explain the ability of RSV to re-infect throughout life.

Results

To determine whether this effect is dependent on the virus, the route of infection, or the type of infection (respiratory, disseminated, or localized dermal), we compared the CTL responses in mice following intranasal (IN) infection with RSV or influenza virus or IN or intradermal (ID) infection with vaccinia virus expressing an RSV CTL antigen. The impairment was observed in the lungs after IN infection with RSV, influenza or vaccinia virus, and after a localized ID infection with vaccinia virus. In contrast, we observed a much higher percentage of IFNγ secreting CD8+ lymphocytes in the spleens of infected mice in every case.

Conclusion

The decreased functionality of CD8+ CTL is specific to the lungs and is not dependent on the specific virus, viral antigen, or route of infection.  相似文献   

14.
Although it is well documented that CD8 T cells play a critical role in controlling chronic viral infections, the mechanisms underlying the regulation of CD8 T-cell responses are not well understood. Using the mouse model of an acute and chronic lymphocytic choriomeningitis virus (LCMV) infection, we have examined the relative importance of peripheral T cells and thymic emigrants in the elicitation and maintenance of CD8 T-cell responses. Virus-specific CD8 T-cell responses were compared between mice that were either sham thymectomized or thymectomized (Thx) at approximately 6 weeks of age. In an acute LCMV infection, thymic deficiency did not affect either the primary expansion of CD8 T cells or the proliferative renewal and maintenance of virus-specific lymphoid and nonlymphoid memory CD8 T cells. Following a chronic LCMV infection, in Thx mice, although the initial expansion of CD8 T cells was normal, the contraction phase of the CD8 T-cell response was exaggerated, which led to a transient but striking CD8 T-cell deficit on day 30 postinfection. However, the virus-specific CD8 T-cell response in Thx mice rebounded quickly and was maintained at normal levels thereafter, which indicated that the peripheral T-cell repertoire is quite robust and capable of sustaining an effective CD8 T-cell response in the absence of thymic output during a chronic LCMV infection. Taken together, these findings should further our understanding of the regulation of CD8 T-cell homeostasis in acute and chronic viral infections and might have implications in the development of immunotherapy.  相似文献   

15.
Experiments designed to distinguish virus-specific from non-virus-specific T cells showed that bystander T cells underwent apoptosis and substantial attrition in the wake of a strong T-cell response. Memory CD8 T cells (CD8(+) CD44(hi)) were most affected. During acute viral infection, transgenic T cells that were clearly defined as non-virus specific decreased in number and showed an increase in apoptosis. Also, use of lymphocytic choriomeningitis virus (LCMV) carrier mice, which lack LCMV-specific T cells, showed a significant decline in non-virus-specific memory CD8 T cells that correlated to an increase in apoptosis in response to the proliferation of adoptively transferred virus-specific T cells. Attrition of T cells early during infection correlated with the alpha/beta interferon (IFN-alpha/beta) peak, and the IFN inducer poly(I:C) caused apoptosis and attrition of CD8(+) CD44(hi) T cells in normal mice but not in IFN-alpha/beta receptor-deficient mice. Apoptotic attrition of bystander T cells may make room for the antigen-specific expansion of T cells during infection and may, in part, account for the loss of T-cell memory that occurs when the host undergoes subsequent infections.  相似文献   

16.
Cytotoxic T cell responses to the murine Cytomegalovirus (MCMV) were elicited in BALB/c mice (H-2d) by infectious virus. Eight days after infection, MCMV-primed local lymph node T cells were either depleted for T cells expressing a V beta 8+ TCR or separated into V beta 8+ and V beta 8- subpopulations by a cell sorter using the mAb F23.1. T cells were then expanded in vitro under limiting dilution conditions in the presence of IL-2 and in the absence of viral Ag to avoid selection by Ag in vitro. Frequencies of CTL precursors specific for the Immediate-Early-Ag 1 of MCMV and restricted to H-2Ld were determined. L cells of the endogenous haplotype H-2k cotransfected with the genes for MCMV-IE 1 and H-2Ld were used as target cells. Detection of a CTL response required previous priming of the animals by infection in vivo (less than 1/10(6) for nonimmunized animals). In primed animals CTL precursors of this specificity and restriction were three to fivefold more frequent in the V beta 8+ population (1/9.900 to 1/22.300) than in the V beta 8- population (1/57.000 to 1/87.200). Control experiments showed that frequencies were not influenced by the treatment with the anti-V beta 8-antibody and the fluorescein-labeled anti-Ig itself. V beta 8+ and V beta 8- T cells did not reveal any frequency differences when several other responses were determined (TNP-specific self-restricted CTL precursor; Th cells specific for keyhole limpet hemocyanin or Listeria monocytogenes).  相似文献   

17.
Kang BS  Lyman MA  Kim BS 《Journal of virology》2002,76(13):6577-6585
Theiler's virus infection of the central nervous system (CNS) induces an immune-mediated demyelinating disease in susceptible mouse strains, such as SJL/J, and serves as a relevant infectious model for human multiple sclerosis. It has been previously suggested that susceptible SJL/J mice do not mount an efficient cytotoxic T-lymphocyte (CTL) response to the virus. In addition, genetic studies have shown that resistance to Theiler's virus-induced demyelinating disease is linked to the H-2D major histocompatibility complex class I locus, suggesting that a compromised CTL response may contribute to the susceptibility of SJL/J mice. Here we show that SJL/J mice do, in fact, generate a CD8(+) T-cell response in the CNS that is directed against one dominant (VP3(159-166)) and two subdominant (VP1(11-20) and VP3(173-181)) capsid protein epitopes. These virus-specific CD8(+) T cells produce gamma interferon (IFN-gamma) and lyse target cells in the presence of the epitope peptides, indicating that these CNS-infiltrating CD8(+) T cells are fully functional effector cells. Intracellular IFN-gamma staining analysis indicates that greater than 50% of CNS-infiltrating CD8(+) T cells are specific for these viral epitopes at 7 days postinfection. Therefore, the susceptibility of SJL/J mice is not due to the lack of an early functional Theiler's murine encephalomyelitis virus-specific CTL response. Interestingly, T-cell responses to all three epitopes are restricted by the H-2K(s) molecule, and this skewed class I restriction may be associated with susceptibility to demyelinating disease.  相似文献   

18.
Virus-specific cytotoxic T lymphocytes (CTL) are thought to be responsible for the eradication of respiratory influenza virus infections by direct cytolysis of virus-infected epithelial cells. In this study, we provide evidence for a role for alveolar macrophages (AM) in the regulation of pulmonary virus-specific CTL responses. Prior to infection with influenza virus, AM were selectively eliminated in vivo with a liposome-mediated depletion technique, and virus-specific CTL activities of lung and mediastinal lymph node (MLN) cells were assayed ex vivo and compared with those for normal mice. AM depletion resulted in increased primary CTL responses and changed the kinetics of the CTL response. Flow cytometric analysis of lung and MLN cells showed that the percentage of CD8+ cells was not altered after AM depletion and that lung cells from AM-depleted mice had an increased capacity to lyse virus-infected cells. Upon restimulation in vitro, virus-specific CTL activity in lung cells of normal mice was similar to that in lung cells of AM-depleted mice. Furthermore, elimination of AM resulted in increased virus titers in the lung, but virus clearance as a function of time was not affected. Our results show that AM regulate virus-specific CTL responses during respiratory influenza virus infection by removing viral particles, by downregulating the priming and activity of CTL in MLN cells, and by inhibiting the expansion of virus-specific CTL in the lung.  相似文献   

19.
CD8 T-cell (T(CD8+)) responses elicited by viral infection demonstrate the phenomenon of immunodominance: the numbers of T(CD8+) responding to different viral peptides vary over a wide range in a reproducible manner for individuals with the same major histocompatibility complex class I alleles. To better understand immunodominance, we examined T(CD8+) responses to multiple defined viral peptides following infection of mice with influenza virus. The immunodominance hierarchy of influenza virus-specific T(CD8+) was not greatly perturbed by the absence of either perforin or T-helper cells or by interference with B7 (CD80)-mediated signaling. These findings indicate that costimulation by antigen-presenting cells (APCs) or killing of APCs by T(CD8+) plays only a minor role in establishing the immunodominance hierarchy of antiviral T(CD8+) in this system. This points to intrinsic features of the T(CD8+) repertoire as major contributors to immunodominance.  相似文献   

20.
Intrathymic tolerance results in elimination of T cells bearing self-reactive TCR V beta regions in mice expressing certain combinations of I-E and minor lymphocyte stimulatory (Mls) phenotypes. To determine if autoimmune strains of mice have a defect in intrathymic deletion of self-reactive TCR V beta regions, expression of V beta 3, V beta 6, V beta 8.1, and V beta 11 were examined in lpr/lpr and +/+ strains of mice; MRL/MpJ(H-2K, I-E+, Mlsb,), C57BL/6J(H-2b, I-E-, Mlsb,), C3H/HeJ(H-2k, I-E+, Mlsc), AKR/J(H-2k, I-E+, Mlsa); and in autoimmune NZB/N(H-2d, I-E+, Mlsa) and BXSB(H-2b, I-E-, Mlsb) mice. The results suggest that, during intrathymic development, self-reactive T cells are deleted in autoimmune strains of mice as found in normal control strains of mice. However, the TCR V beta repertoire is skewed in autoimmune strains compared to normal strains of mice. For example, MRL-lpr/lpr mice, but not other lpr/lpr strains, had increased expression of V beta 6 relative to expression in control MRL(-)+/+ mice, which is associated with collagen-induced arthritis. These data are consistent with a model of normal affinity for negative selection of self-reactive T cells in the thymus of autoimmune strains of mice followed by expansion of autoreactive T cell clones in the peripheral lymphoid organs. The peripheral lymphoid organs of lpr/lpr mice contain an expanded population of abnormal CD4-, CD8-, 6B2+ T cells. Elimination of self-reactive peripheral T cells suggests that these abnormal cells are derived from a CD4+ subpopulation in the thymus. Flow cytometry analysis of peripheral lymph node T cells from MRL-lpr/lpr mice reveal three populations of CD4+ T cells expressing low, intermediate and high intensity of B220 (6B2). This supports the hypothesis that in lpr/lpr mice, self-reactive CD4+ T cells are eliminated in the thymus, and that these cells lose expression of CD4 and acquire expression of 6B2 in the periphery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号