首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Studies using animal models of stroke have demonstrated that free radicals are highly reactive molecules generated predominantly during cellular respiration and normal metabolism. Imbalance between cellular production of free radicals and the ability of cells to defend against them is referred to as oxidative stress. After ischemic brain damage introduced by ischemic stroke or reperfusion, production of reactive oxygen species may increase, sometimes drastically, leading to tissue damage via several different cellular molecular pathways. The damage can become more widespread due to weakened cellular antioxidant defense systems after ischemic stroke. These experimental findings have important implications for the treatment of human cerebral ischemia. Agents directed at eliminating oxygen radicals must be administered before, or in the early stages of, reperfusion after ischemia. The therapeutic window seems to be narrow and limited to, at most, a few hours. Future research may clarify the current hypothesis that the accuracy of gene expression could account for the recovery of cellular function after ischemic stroke. This may open the window to the future use of drug combinations that may be rationally administered sequentially. If the phenomenon of ischemic tolerance plays a role in this concept is still a matter of debate.  相似文献   

3.
Reperfusion of ischemic tissue results in the generation of reactive oxygen species that contribute to tissue injury. The sources of reactive oxygen species in reperfused tissue are not fully characterized. We hypothesized that the small GTPase Rac1 mediates the oxidative burst in reperfused tissue and thereby contributes to reperfusion injury. In an in vivo model of mouse hepatic ischemia/reperfusion injury, recombinant adenoviral expression of a dominant negative Rac1 (Rac1N17) completely suppressed the ischemia/reperfusion-induced production of reactive oxygen species and lipid peroxides, activation of nuclear factor-kappa B, and resulted in a significant reduction of acute liver necrosis. Expression of Rac1N17 also suppressed ischemia/reperfusion-induced acute apoptosis. The protection offered by Rac1N17 was also evident in knockout mice deficient for the gp91phox component of the phagocyte NADPH oxidase. This work demonstrates the crucial role of a Rac1-regulated oxidase in mediating the production of injurious reactive oxygen species, which contribute to acute necrotic and apoptotic cell death induced by ischemia/reperfusion in vivo. Targeted inhibition of this oxidase, which is distinct from the phagocyte NADPH oxidase, should provide a new avenue for in vivo therapy aimed at protecting organs at risk from ischemia/reperfusion injury.-Ozaki, M., Deshpande, S. S., Angkeow, P., Bellan, J., Lowenstein, C. J., Dinauer, M. C., Goldschmidt-Clermont, P. J., Irani, K. Inhibition of the Rac1 GTPase protects against nonlethal ischemia/reperfusion-induced necrosis and apoptosis in vivo.  相似文献   

4.
Reactive oxygen metabolites play an important role in ischemia-reperfusion related gastric injury. Primary sources of reactive oxygen metabolites seem to be the xanthine/xanthine oxidase system and neutrophils accumulating within the reperfused tissue. Tissue myeloperoxidase activity is an important index of neutrophil accumulation. The purpose of the present study was to clarify the effect of L-carnitine on the accumulation of neutrophils and neutrophil-induced gastric mucosal damage in rats exposed to ischemia-reperfusion. Rats were randomly divided into three groups: sham-operated, ischemia-reperfusion and ischemia-reperfusion plus L-carnitine groups. Ischemia was induced by clamping the celiac artery for 30 min and then reperfusion was established for 60 min. Gastric injury was assessed by measuring myeloperoxidase activity in gastric tissue. The neutrophil accumulation and hemorrhagic lesions due to ischemia-reperfusion in gastric mucosa were ascertained in a histological study. L-Carnitine (100 mg kg(-1)) administrated intravenously 5 min before ischemia significantly reduced both the gastric injury and myeloperoxidase activity compared with the ischemia-reperfusion group. The results suggest that L-carnitine provides marked protection against ischemia-reperfusion-related gastric injury which could be due to its ability to reduce neutrophil accumulation in ischemic tissue.  相似文献   

5.
活性氧簇是细胞有氧代谢过程中产生的一类化学基团。线粒体是活性氧簇的主要生成位点。一般观点认为,在脑缺血-再灌注损伤过程中,活性氧簇发挥神经细胞损伤作用。活性氧簇不仅直接参与神经细胞氧化损伤过程,也可通过外源性途径和内源性途径,引起神经细胞凋亡。然而,除神经细胞损伤作用外,活性氧簇也可发挥神经细胞保护作用。活性氧簇可激活低氧诱导因子、核转录因子κB、PI3K/Akt通路和MAPK通路等,参与神经细胞存活机制,减轻神经细胞损伤。本文对活性氧簇在脑缺血-再灌注损伤中的双重作用进行综述。  相似文献   

6.
If a coronary blood vessel is occluded and the neighboring cardiomyocytes deprived of oxygen, subsequent reperfusion of the ischemic tissue can lead to oxidative damage due to excessive generation of reactive oxygen species. Cardiomyocytes and their mitochondria are the main energy producers and consumers of the heart, and their metabolic changes during ischemia seem to be a key driver of reperfusion injury. Here, we hypothesized that tracking changes in cardiomyocyte metabolism, such as oxygen and ATP concentrations, would help in identifying points of metabolic failure during ischemia and reperfusion. To track some of these changes continuously from the onset of ischemia through reperfusion, we developed a system of differential equations representing the chemical reactions involved in the production and consumption of 67 molecular species. This model was validated and used to identify conditions present during periods of critical transition in ischemia and reperfusion that could lead to oxidative damage. These simulations identified a range of oxygen concentrations that lead to reverse mitochondrial electron transport at complex I of the respiratory chain and a spike in mitochondrial membrane potential, which are key suspects in the generation of reactive oxygen species at the onset of reperfusion. Our model predicts that a short initial reperfusion treatment with reduced oxygen content (5% of physiological levels) could reduce the cellular damage from both of these mechanisms. This model should serve as an open-source platform to test ideas for treatment of the ischemia reperfusion process by following the temporal evolution of molecular concentrations in the cardiomyocyte.  相似文献   

7.
Mitochondria play a key role in various cell processes including ATP production, Ca2+ homeostasis, reactive oxygen species (ROS) generation, and apoptosis. The selective removal of impaired mitochondria by autophagosome is known as mitophagy. Cerebral ischemia is a common form of stroke caused by insufficient blood supply to the brain. Emerging evidence suggests that mitophagy plays important roles in the pathophysiological process of cerebral ischemia. This review focuses on the relationship between ischemic brain injury and mitophagy. Based on the latest research, it describes how the signaling pathways of mitophagy appear to be involved in cerebral ischemia.  相似文献   

8.
Despite decades of intensive research, there is still no effective treatment for ischemia/reperfusion (I/R) injury, an important corollary in the treatment of ischemic disease. I/R injury is initiated when the altered biochemistry of cells after ischemia is no longer compatible with oxygenated microenvironment (or reperfusion). To better understand the molecular basis of this alteration and subsequent incompatibility, we assessed the temporal and quantitative alterations in the cardiac proteome of a mouse cardiac I/R model by an iTRAQ approach at 30 min of ischemia, and at 60 or 120 min reperfusion after the ischemia using sham-operated mouse heart as the baseline control. Of the 509 quantified proteins identified, 121 proteins exhibited significant changes (p-value<0.05) over time and were mostly clustered in eight functional groups: Fatty acid oxidation, Glycolysis, TCA cycle, ETC (electron transport chain), Redox Homeostasis, Glutathione S-transferase, Apoptosis related, and Heat Shock proteins. The first four groups are intimately involved in ATP production and the last four groups are known to be important in cellular antioxidant activity. During ischemia and reperfusion, the short supply of oxygen precipitates a pivotal metabolic switch from aerobic metabolism involving fatty acid oxidation, TCA, and phosphorylation to anaerobic metabolism for ATP production and this, in turn, increases reactive oxygen species (ROS) formation. Therefore the implication of these 8 functional groups suggested that ischemia-reperfusion injury is underpinned in part by proteomic alterations. Reversion of these alterations to preischemia levels took at least 60 min, suggesting a refractory period in which the ischemic cells cannot adjust to the presence of oxygen. Therefore, therapeutics that could compensate for these proteomic alterations during this interim refractory period could alleviate ischemia-reperfusion injury to enhance cellular recovery from an ischemic to a normoxic microenvironment. Among the perturbed proteins, Park7 and Ppia were selected for further investigation of their functions under hypoxia. The results show that Park7 plays a key role in regulating antioxidative stress and cell survival, and Ppia may function in coping with the unfolded protein stress in the I/R condition.  相似文献   

9.
Stroke and circulatory arrest cause interferences in blood flow to the brain that result in considerable tissue damage. The primary method to reduce or prevent neurologic damage to patients suffering from brain ischemia is prompt restoration of blood flow to the ischemic tissue. However, paradoxically, restoration of blood flow causes additional damage and exacerbates neurocognitive deficits among patients who suffer a brain ischemic event. Mitochondria play a critical role in reperfusion injury by producing excessive reactive oxygen species (ROS) thereby damaging cellular components, and initiating cell death. In this review, we summarize our current understanding of the mechanisms of mitochondrial ROS generation during reperfusion, and specifically, the role the mitochondrial membrane potential plays in the pathology of cerebral ischemia/reperfusion. Additionally, we propose a temporal model of ROS generation in which posttranslational modifications of key oxidative phosphorylation (OxPhos) proteins caused by ischemia induce a hyperactive state upon reintroduction of oxygen. Hyperactive OxPhos generates high mitochondrial membrane potentials, a condition known to generate excessive ROS. Such a state would lead to a “burst” of ROS upon reperfusion, thereby causing structural and functional damage to the mitochondria and inducing cell death signaling that eventually culminate in tissue damage. Finally, we propose that strategies aimed at modulating this maladaptive hyperpolarization of the mitochondrial membrane potential may be a novel therapeutic intervention and present specific studies demonstrating the cytoprotective effect of this treatment modality.  相似文献   

10.
Reactive oxygen species and airway inflammation   总被引:23,自引:0,他引:23  
Reactive oxygen species may be generated by several inflammatory cells which participate in airway inflammation and their production may be increased in asthma. Oxygen metabolites may contribute to the epithelial damage which is characteristic of asthmatic airways and may activate cells such as mast cells in the airway mucosa. Reactive oxygen species may cause bronchoconstriction, mucus secretion, have effects on airway vasculature, and may increase airway responsiveness. The role of reactive oxygen species in airway disease has been largely neglected, but appears to be an important area for future study. It is also possible that antioxidant defenses may be defective in asthma. If reactive oxygen species participate in the inflammatory response in airway disease, then radical scavengers or antioxidants could play a useful role in therapy.  相似文献   

11.
A major goal in the treatment of acute ischemia of a vascular territory is to restore blood flow to normal values, i.e. to "reperfuse" the ischemic vascular bed. However, reperfusion of ischemic tissues is associated with local and systemic leukocyte activation and trafficking, endothelial barrier dysfunction in postcapillary venules, enhanced production of inflammatory mediators and great lethality. This phenomenon has been referred to as "reperfusion injury" and several studies demonstrated that injury is dependent on neutrophil recruitment. Furthermore, ischemia and reperfusion injury is associated with the coordinated activation of a series of cytokines and adhesion molecules. Among the mediators of the inflammatory cascade released, TNF-alpha appears to play an essential role for the reperfusion-associated injury. On the other hand, the release of IL-10 modulates pro-inflammatory cytokine production and reperfusion-associated tissue injury. IL-1beta, PAF and bradykinin are mediators involved in ischemia and reperfusion injury by regulating the balance between TNF-alpha and IL-10 production. Strategies that enhance IL-10 and/or prevent TNF-alpha concentration may be useful as therapeutic adjuvants in the treatment of the tissue injury that follows ischemia and reperfusion.  相似文献   

12.
Claudia Penna 《BBA》2009,1787(7):781-793
A series of brief (a few minutes) ischemia/reperfusion cycles (ischemic preconditioning, IP) limits myocardial injury produced by a subsequent prolonged period of coronary artery occlusion and reperfusion. Postconditioning (PostC), which is a series of brief (a few seconds) reperfusion/ischemia cycles at reperfusion onset, attenuates also ischemia/reperfusion injury. In recent years the main idea has been that reactive oxygen species (ROS) play an essential, though double-edged, role in cardioprotection: they may participate in reperfusion injury or may play a role as signaling elements of protection in the pre-ischemic phase. It has been demonstrated that preconditioning triggering is redox-sensitive, using either ROS scavengers or ROS generators. We have shown that nitroxyl triggers preconditioning via pro-oxidative, and/or nitrosative stress-related mechanism(s). Several metabolites, including acetylcholine, bradykinin, opioids and phenylephrine, trigger preconditioning-like protection via a mitochondrial KATP-ROS-dependent mechanism. Intriguingly, and contradictory to the above mentioned theory of ROS as an obligatory part of reperfusion-induced damage, some studies suggest the possibility that some ROS at low concentrations could protect ischemic hearts against reperfusion injury. Yet, we demonstrated that ischemic PostC is also a cardioprotective phenomenon that requires the intervention of redox signaling to be protective. Emerging evidence suggests that in a preconditioning scenario a redox signal is required during the first few minutes of myocardial reperfusion following the index ischemic period. Intriguingly, the ROS signaling in the early reperfusion appear crucial to both preconditioning- and postconditioning-induced protection. Therefore, our and others' results suggest that the role of ROS in reperfusion may be reconsidered as they are not only deleterious.  相似文献   

13.
17β-Estradiol (E2) has been shown to protect against ischemic brain injury, yet its targets and the mechanisms are unclear. E2 may exert multiple regulatory actions on astrocytes that may greatly contribute to its ability to protect the brain. Mitochondria are recognized as playing central roles in the development of injury during ischemia. Increasing evidence indicates that mitochondrial mechanisms are critically involved in E2-mediated protection. In this study, the effects of E2 and the role of mitochondria were evaluated in primary cultures of astrocytes subjected to an ischemia-like condition of oxygen-glucose deprivation (OGD)/reperfusion. We showed that E2 treatment significantly protects against OGD/reperfusion-induced cell death as determined by cell viability, apoptosis, and lactate dehydrogenase leakage. The protective effects of E2 on astrocytic survival were blocked by an estrogen receptor (ER) antagonist (ICI-182,780) and were mimicked by an ER agonist selective for ERα (PPT), but not by an ER agonist selective for ERβ (DPN). OGD/reperfusion provoked mitochondrial dysfunction as manifested by an increase in cellular reactive oxygen species production, loss of mitochondrial membrane potential, and depletion of ATP. E2 pretreatment significantly inhibited OGD/reperfusion-induced mitochondrial dysfunction, and this effect was also blocked by ICI-182,780. Therefore, we conclude that E2 provides direct protection to astrocytes from ischemic injury by an ER-dependent mechanism, highlighting an important role for ERα. Estrogen protects against mitochondrial dysfunction at the early phase of ischemic injury. However, overall implications for protection against brain ischemia and its complex sequelae await further exploration.  相似文献   

14.
Liu KX  Li C  Li YS  Yuan BL  Xu M  Xia Z  Huang WQ 《Proteomics》2010,10(24):4463-4475
Intestinal ischemia/reperfusion (I/R) injury is a critical condition associated with high morbidity and mortality. Studies show that ischemic preconditioning (IPC) can protect the intestine from I/R injury. However, the underlying molecular mechanisms of this event have not been fully elucidated. In the present study, 2-DE combined with MALDI-MS was employed to analyze intestinal mucosa proteomes of rat subjected to I/R injury in the absence or presence of IPC pretreatment. The protein content of 16 proteins in the intestinal mucosa changed more than 1.5-fold following intestinal I/R. These proteins were, respectively, involved in the cellular processes of energy metabolism, anti-oxidation and anti-apoptosis. One of these proteins, aldose reductase (AR), removes reactive oxygen species. In support of the 2-DE results, the mRNA and protein expressions of AR were significantly downregulated upon I/R injury and enhanced by IPC as confirmed by RT-PCR and western blot analysis. Further study showed that AR-selective inhibitor epalrestat totally turned over the protective effect of IPC, indicating that IPC confers protection against intestinal I/R injury primarily by increasing intestinal AR expression. The finding that AR may play a key in intestinal ischemic protection might offer evidences to foster the development of new therapies against intestinal I/R injury.  相似文献   

15.
Considerable evidence has accumulated that oxygen free radicals play a major role in ischemic injury, particularly when followed by reperfusion. Few reports have demonstrated the occurrence of oxidative damage during the ischemic period, itself. Our laboratory has demonstrated that events occurring during an ischemic period with adequate oxygen supply can mimic the "oxygen paradox," using lipid peroxidation as an index of oxidative stress and lung edema as an index of tissue injury. The present study compares lipid peroxidation and oxidation of soluble (100,000g supernatant) protein during ischemia and reperfusion in isolated rat lung model perfused with artificial medium and ventilated with varying alveolar oxygen tension. Protein oxidation was determined by a modified dinitrophenylhydrazine (DNPH) method using Sephadex G-25 column chromatography to isolate the DNPH bound proteins. Global ischemia was produced by discontinuing perfusion while ventilation continued with gas mixtures containing 5% CO2 and a fixed oxygen concentration between 0 and 95%. After 1 h ischemia in the isolated rat lung ventilated with 20% oxygen, protein carbonyls and thiobarbituric acid reactive substances (TBARS) increased significantly compared with controls. These changes were more pronounced after 60 min of reperfusion with 95% oxygen in the ventilation gas. With 0% oxygen (95% nitrogen and 5% CO2) content of the ventilating gas during ischemia, TBARS and protein carbonyls remained at the control level. The wet/dry weight ratio showed changes parallel to the indices of tissue oxidation. The presence of 5,8,11,14-eicosatetraynoic, an inhibitor of cyclooxygenase and lipoxygenase pathways, in the perfusate had no effect on the generation of protein carbonyls although inhibition of lipid peroxidation was demonstrated. This implies that the oxidation of soluble protein is not mediated by the eicosanoid metabolic cascade. These data indicate that oxidative processes occur during ischemia and are dependent on the alveolar oxygen concentration. Oxidation of soluble protein can be used as an index of oxidative damage during lung ischemia and reperfusion.  相似文献   

16.
Damaged or dysfunctional mitochondria are toxic to the cell by producing reactive oxygen species and releasing cell death factors. Therefore, timely removal of these organelles is critical to cellular homeostasis and viability. Mitophagy is the mechanism of selective degradation of mitochondria via autophagy. The significance of mitophagy in kidney diseases, including ischemic acute kidney injury (AKI), has yet to be established, and the involved pathway of mitophagy remains poorly understood. Here, we show that mitophagy is induced in renal proximal tubular cells in both in vitro and in vivo models of ischemic AKI. Mitophagy under these conditions is abrogated by Pink1 and Park2 deficiency, supporting a critical role of the PINK1-PARK2 pathway in tubular cell mitophagy. Moreover, ischemic AKI is aggravated in pink1 andpark2 single- as well as double-knockout mice. Mechanistically, Pink1 and Park2 deficiency enhances mitochondrial damage, reactive oxygen species production, and inflammatory response. Taken together, these results indicate that PINK1-PARK2-mediated mitophagy plays an important role in mitochondrial quality control, tubular cell survival, and renal function during AKI.  相似文献   

17.
The inflammatory bowel diseases (IBD; Crohn's disease, ulcerative colitis) are a collection of chronic idiopathic inflammatory disorders of the intestine and/or colon. Although the pathophysiology of IBD is not known with certainty, a growing body of experimental and clinical data suggests that chronic gut inflammation may result from a dysregulated immune response to normal bacterial antigens. This uncontrolled immune system activation results in the sustained overproduction of reactive metabolites of oxygen and nitrogen. It is thought that some of the intestinal and/or colonic injury and dysfunction observed in IBD is due to elaboration of these reactive species. This review summarizes the current state-of-knowledge of the role of reactive oxygen species and nitric oxide in the pathophysiology of IBD.  相似文献   

18.
The timely restoration of blood flow to severely ischemic myocardium limits myocardial infarct size. However, experimental studies demonstrate that the myocardial salvage achieved is suboptimal because of additional injury that occurs during reperfusion, due in part to the generation of reactive oxygen metabolites. Initially, superoxide (O2-) was considered to be the central mediator of reperfusion injury. While there are several potential pathways of O2- generation in reperfused myocardium, O2- is poorly reactive toward tissue biomolecules. However, O2-, in the presence of redox-active metals such as iron, generates .OH or hydroxyl-like species that are highly reactive with cell constituents. Thus, while O2- may initiate reaction sequences leading to myocardial injury, it may not be the actual injurious agent. In vitro studies suggest that oxygen metabolite injury occurs at intracellular sites and involves iron-catalyzed processes. Consistent with this mechanism, extracellular oxygen metabolite scavengers have not convincingly reduced infarct size. However, treatment around the time of reperfusion, after ischemia is well established, with cell-permeable scavengers of .OH reduce infarct size. Results with these cell-permeable agents suggest that in the intact animal during regional ischemia and reperfusion, oxygen metabolite injury also occurs at intracellular sites. Cell-permeable scavenger agents are a promising class of drugs for potential clinical use, though further experimental and toxicologic studies are required.  相似文献   

19.
Serum antibodies to commensal oral and gut bacteria vary with age   总被引:3,自引:0,他引:3  
Abstract Pyelonephritis is the most common urinary tract infection affecting females of all age groups. Despite concerted efforts the mechanism of renal injury in pyelonephritis is not clearly understood. In the present study we have made an attempt to characterise the mediators of inflammatory insult in an experimental model of ascending pyelonephritis. Mice infected with Escherichia coli O6:K13:H1 were sacrificed at 2, 7 and 14 days post-infection. Luminol-dependent chemiluminescence response, NADPH oxidase, acid phosphatase, β-glucuronidase and N -acetyl-β- d -glucosaminidase activities were monitored in circulating as well as renal phagocytic cells in order to determine the role of reactive oxygen species and lysosomal enzymes in genesis of renal injury. We have demonstrated that reactive oxygen species are generated at the initiation of infection and the levels increase progressively during the course of infection. While intracellular release of lysosomal enzymes was seen in all groups, extracellular release was primarily observed at 7 and 14 days post-infection only. The results indicate that while reactive oxygen species play a significant role in tissue injury during all stages of infection, lysosomal enzyme release in extracellular milieu augments tissue destruction at later stages only.  相似文献   

20.
缺血再灌注损伤为心肌梗死,器官移植,肠道灌注不足,脑中风等疾病或手术的常见并发症,是导致危重病人死亡的重要因素,然而至今临床上仍未有十分理想的治疗方法。在组织缺血再灌注过程中,中性粒细胞通过NADPH(Nicotinamide-adenine dinucleotide phosphate)氧化酶的活化产生大量活性氧(Reactive oxygen species,ROS),一方面参与氧化应激,另一方面进一步招募中性粒细胞,扩大炎症反应,造成组织损伤。本文综述了国外期刊报道的中性粒细胞NADPH氧化酶与组织缺血再灌注损伤的相关研究进展,以期为心脑血管等重大疾病防治提供一定线索。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号