首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Furin, a subtilisin-like eukaryotic endoprotease, is responsible for proteolytic cleavage of cellular and viral proteins transported via the constitutive secretory pathway. Cleavage occurs at the C-terminus of basic amino acid sequences, such as R-X-K/R-R and R-X-X-R. Furin was found predominantly in the trans-Golgi network (TGN), but also in clathrin-coated vesicles dispatched from the TGN, on the plasma membrane as an integral membrane protein and in the medium as an anchorless enzyme. When furin was vectorially expressed in normal rat kidney (NRK) cells it accumulated in the TGN similarly to the endogenous glycoprotein TGN38, often used as a TGN marker protein. The signals determining TGN targeting of furin were investigated by mutational analysis of the cytoplasmic tail of furin and by using the hemagglutinin (HA) of fowl plague virus, a protein with cell surface destination, as a reporter molecule, in which membrane anchor and cytoplasmic tail were replaced by the respective domains of furin. The membrane-spanning domain of furin grafted to HA does not localize the chimeric molecule to the TGN, whereas the cytoplasmic domain does. Results obtained on furin mutants with substitutions and deletions of amino acids in the cytoplasmic tail indicate that wild-type furin is concentrated in the TGN by a mechanism involving two independent targeting signals, which consist of the acidic peptide CPSDSEEDEG783 and the tetrapeptide YKGL765. The acidic signal in the cytoplasmic domain of a HA-furin chimera is necessary and sufficient to localize the reporter molecule to the TGN, whereas YKGL is a determinant for targeting to the endosomes. The data support the concept that the acidic signal, which is the dominant one, retains furin in the TGN, whereas the YKGL motif acts as a retrieval signal for furin that has escaped to the cell surface.  相似文献   

2.
《The Journal of cell biology》1994,126(5):1157-1172
To investigate the mechanisms of membrane protein localization to the Golgi complex, we have examined the intracellular trafficking of epitope-tagged forms of the mammalian endopeptidase, furin, in stably transformed rat basophilic leukemia cells. Our studies show that furin is predominantly localized to the trans-Golgi network (TGN) at steady state, with smaller amounts present in intracellular vesicles. Biochemical and morphological analyses reveal that furin is progressively delivered to a lysosomal compartment, where it is degraded. Analyses of furin deletion mutants and chimeric proteins show that the cytoplasmic domain is both necessary and sufficient for localization to the TGN in various cell types. Interestingly, deletion of most of the cytoplasmic domain of furin results in a molecule that is predominantly localized to intracellular vesicles, some of which display characteristics of lysosomes. To a lesser extent, the cytoplasmically deleted molecule is also localized to the plasma membrane. These observations suggest the existence of an additional determinant for targeting to the endosomal/lysosomal system within the lumenal and/or transmembrane domains of furin. Thus, the overall pattern of trafficking and steady state localization of furin are determined by targeting information contained within more than one region of the molecule.  相似文献   

3.
Furin catalyzes the proteolytic maturation of many proproteins within the trans-Golgi network (TGN)/endosomal system. Furin's cytosolic domain (cd) directs both the compartmentalization to and transit between its manifold processing compartments (i.e., TGN/biosynthetic pathway, cell surface, and endosomes). Here we report the identification of the first furin cd sorting protein, ABP-280 (nonmuscle filamin), an actin gelation protein. The furin cd was used as bait in a yeast two-hybrid screen to identify ABP-280 as a furin-binding protein. Binding analyses in vitro and coimmunoprecipitation studies in vivo showed that furin and ABP-280 interact directly and that ABP-280 tethers furin molecules to the cell surface. Quantitative analysis of both ABP-280-deficient and genetically replete cells showed that ABP-280 modulates the rate of internalization of furin but not of the transferrin receptor, a cycling receptor. However, although ABP-280 directs the rate of furin internalization, the efficiency of sorting of the endoprotease from the cell surface to early endosomes is independent of expression of ABP-280. By contrast, efficient sorting of furin from early endosomes to the TGN requires expression of ABP-280. In addition, ABP-280 is also required for the correct localization of late endosomes (dextran bead uptake) and lysosomes (LAMP-1 staining), demonstrating a pleiotropic role for this actin binding protein in the organization of cellular compartments and directing protein traffic. Finally, and consistent with the trafficking studies on furin, we showed that ABP-280 modulates the processing of furin substrates in the endocytic but not the biosynthetic pathways. The novel roles of ABP-280 and the cytoskeleton in the sorting of furin in the TGN/ endosomal system and the formation of proprotein processing compartments are discussed.  相似文献   

4.
The regulated sorting of proteins within the trans-Golgi network (TGN)/endosomal system is a key determinant of their biological activity in vivo. For example, the endoprotease furin activates of a wide range of proproteins in multiple compartments within the TGN/endosomal system. Phosphorylation of its cytosolic domain by casein kinase II (CKII) promotes the localization of furin to the TGN and early endosomes whereas dephosphorylation is required for efficient transport between these compartments (Jones, B.G., L. Thomas, S.S. Molloy, C.D. Thulin, M.D. Fry, K.A. Walsh, and G. Thomas. 1995. EMBO [Eur. Mol. Biol. Organ.] J. 14:5869–5883). Here we show that phosphorylated furin molecules internalized from the cell surface are retained in a local cycling loop between early endosomes and the plasma membrane. This cycling loop requires the phosphorylation state-dependent furin-sorting protein PACS-1, and mirrors the trafficking pathway described recently for the TGN localization of furin (Wan, L., S.S. Molloy, L. Thomas, G. Liu, Y. Xiang, S.L. Ryback, and G. Thomas. 1998. Cell. 94:205–216). We also demonstrate a novel role for protein phosphatase 2A (PP2A) in regulating protein localization in the TGN/endosomal system. Using baculovirus recombinants expressing individual PP2A subunits, we show that the dephosphorylation of furin in vitro requires heterotrimeric phosphatase containing B family regulatory subunits. The importance of this PP2A isoform in directing the routing of furin from early endosomes to the TGN was established using SV-40 small t antigen as a diagnostic tool in vivo. The role of both CKII and PP2A in controlling multiple sorting steps in the TGN/endosomal system indicates that the distribution of itinerant membrane proteins may be acutely regulated via signal transduction pathways.  相似文献   

5.
The mammalian endopeptidase, furin, is predominantly localized to the trans-Golgi network (TGN) at steady state. The localization of furin to this compartment seems to be the result of a dynamic process in which the protein undergoes cycling between the TGN and the plasma membrane. Both TGN localization and internalization from the plasma membrane are mediated by targeting information contained within the cytoplasmic domain of furin. Here, we report the results of a mutagenesis analysis aimed at identifying the source(s) of targeting information within the furin cytoplasmic domain. Our studies show that there are at least two cytoplasmic determinants that contribute to the steady-state localization and trafficking of furin. The first determinant corresponds to a canonical tyrosine-based motif, YKGL (residues 758-761), that functions mainly as an internalization signal. The second determinant consists of a strongly hydrophilic sequence (residues 766-783) that contains a large cluster of acidic residues (E and D) and is devoid of any tyrosine-based or di-leucine-based motifs. This second determinant is capable of conferring localization to the TGN as well as mediating internalization from the plasma membrane. Thus, these observations establish the existence of a novel, autonomous determinant distinct from sorting signals described previously.  相似文献   

6.
A S Dittié  L Thomas  G Thomas    S A Tooze 《The EMBO journal》1997,16(16):4859-4870
The composition of secretory granules in neuroendocrine and endocrine cells is determined by two sorting events; the first in the trans-Golgi complex (TGN), the second in the immature secretory granule (ISG). Sorting from the ISG, which may be mediated by the AP-1 type adaptor complex and clathrin-coated vesicles, occurs during ISG maturation. Here we show that furin, a ubiquitously expressed, TGN/endosomal membrane endoprotease, is present in the regulated pathway of neuroendocrine cells where it is found in ISGs. By contrast, TGN38, a membrane protein that is also routed through the TGN/endosomal system does not enter ISGs. Furin, however, is excluded from mature secretory granules, suggesting that the endoprotease is retrieved from the clathrin-coated ISGs. Consistent with this, we show that the furin cytoplasmic domain interacts with AP-1, a component of the TGN/ISG-localized clathrin sorting machinery. Interaction between AP-1 and furin is dependent on phosphorylation of the enzyme's cytoplasmic domain by casein kinase II. Finally, in support of a requirement for the phosphorylation-dependent association of furin with AP-1, expression of furin mutants that mimic either the phosphorylated or unphosphorylated forms of the endoprotease in AtT-20 cells demonstrates that the integrity of the CKII sites is necessary for removal of furin from the regulated pathway.  相似文献   

7.
Furin is a subtilisin-related endoprotease which processes a wide range of bioactive proteins. Furin is concentrated in the trans-Golgi network (TGN), where proteolytic activation of many precursor proteins takes place. A significant fraction of furin, however, cycles among the TGN, the plasma membrane, and endosomes, indicating that the accumulation in the TGN reflects a dynamic localization process. The cytosolic domain of furin is necessary and sufficient for TGN localization, and two signals are responsible for retrieval of furin to the TGN. A tyrosine-based (YKGL) motif mediates internalization of furin from the cell surface into endosomes. An acidic cluster that is part of two casein kinase II phosphorylation sites (SDSEEDE) is then responsible for retrieval of furin from endosomes to the TGN. In addition, the acidic EEDE sequence also mediates endocytic activity. Here, we analyzed the sorting of furin in polarized epithelial cells. We show that furin is delivered to the basolateral surface of MDCK cells, from where a significant fraction of the protein can return to the TGN. A phenylalanine-isoleucine motif together with the acidic EEDE cluster is required for basolateral sorting and constitutes a novel signal regulating intracellular traffic of furin.  相似文献   

8.
The eukaryotic subtilisin-like endoprotease furin is found predominantly in the trans-Golgi network (TGN) and cycles between this compartment, the cell surface, and the endosomes. There is experimental evidence for endocytosis from the plasma membrane and transport from endosomes to the TGN, but direct exit from the TGN to endosomes via clathrin-coated vesicles has only been discussed but not directly shown so far. Here we present data showing that expression of furin promotes the first step of clathrin-coat assembly at the TGN, the recruitment of the Golgi-specific assembly protein AP-1 on Golgi membranes. Further, we report that furin indeed is present in isolated clathrin-coated vesicles. Packaging into clathrin-coated vesicles requires signal components in the furin cytoplasmic domain which can be recognized by AP-1 assembly proteins. We found that besides depending on the phosphorylation state of a casein kinase II site, interaction of the furin tail with AP-1 and its mu1subunit is mediated by a tyrosine motif and to less extent by a leucine-isoleucine signal, whereas a monophenylalanine motif is only involved in binding to the intact AP-1 complex. This study implies that high affinity interaction of AP-1 or mu1 with the cytoplasmic tail of furin needs a complex interplay of signal components rather than one distinct signal.  相似文献   

9.
The predominant intracellular localization of the eukaryotic subtilisin-like endoprotease furin is the trans-Golgi network (TGN), but a small fraction is also found on the cell surface. Furin on the cell surface is internalized and delivered to the TGN. The identification of three endocytosis motifs, a tyrosine (YKGL(765)) motif, a leucine-isoleucine (LI(760)) motif, and a phenylalanine (Phe(790)) signal, in the furin cytoplasmic domain suggested that endocytosis of furin occurs via an AP-2/clathrin-dependent pathway. Since little is known about proteins containing multiple sorting components in their cytoplasmic domain, the combination of diverse internalization signals in the furin tail raised the question of their individual role. Here we present data showing that the furin tail interacts with the medium (micro2) subunit of the AP-2 plasma membrane-specific adaptor complex in vitro and that this interaction primarily depends on recognition of the tyrosine-based sorting signal and to less extent on the leucine-isoleucine motif. We further provide evidence that the three endocytosis signals are of different functional importance for furin internalization and retrieval to the TGN in vivo, with the tyrosine-based motif being the major determinant, followed by the phenylalanine signal, whereas the leucine-isoleucine motif is only a minor component. Finally, we report that phosphorylation of the furin tail by casein kinase II is not only important for efficient interaction with micro2 and internalization from the plasma membrane but also determines fast retrieval of the protein from the plasma membrane to the TGN.  相似文献   

10.
K Bos  C Wraight    K K Stanley 《The EMBO journal》1993,12(5):2219-2228
Sorting of proteins destined for different plasma membrane domains, lysosomes and secretory pathways takes place in the trans-Golgi network (TGN). TGN38 is an integral membrane protein found in this intracellular compartment. We show that TGN38 contains an autonomous targeting signal within its cytoplasmic domain which determines its intracellular location. Deletion analysis and site-directed mutagenesis of this domain demonstrate that a tyrosine motif homologous to the internalization signal of surface receptors is necessary and sufficient for correct localization. These findings suggest that TGN38 is maintained in the TGN by retrieval from the plasma membrane and employs a different mechanism for retention from that of the transferase enzymes of the trans-Golgi.  相似文献   

11.
The localization of proteins to late-Golgi membranes (TGN) of Saccharomyces cerevisiae is conferred by targeting motifs containing aromatic residues in the cytosolic domains of these proteins. These signals could act by directing retrieval from a post-Golgi compartment or by preventing exit from the TGN. To investigate the mechanism of localization of yeast TGN proteins, we used the heterologous protein A-ALP (consisting of the cytosolic domain of dipeptidyl aminopeptidase A [DPAP A] fused to the transmembrane and luminal domains of the vacuolar protein alkaline phosphatase [ALP]), which localizes to the yeast TGN. Insertion of the aromatic residue–based TGN localization motif (FXFXD) of DPAP A into the cytosolic domain of ALP results in a protein that resides in the TGN. We demonstrate that the FXFXD motif confers Golgi localization through retrieval from a post-Golgi compartment by detecting a post-Golgi processed form of this protein in the TGN. We present an assay that uncouples retrieval-mediated Golgi localization from static retention-based localization, allowing measurement of the rate at which proteins exit the yeast TGN. We also demonstrate that the cytosolic domain of DPAP A contains additional information, separate from the retrieval motif, that slows exit from the TGN. We propose a model for DPAP A localization that involves two distinct mechanisms: one in which the FXFXD motif directs retrieval from a post-Golgi compartment, and a second that slows the rate at which DPAP A exits the TGN.  相似文献   

12.
Rat lysosomal glycoprotein 120 (lgp120; lamp-I) is a transmembrane protein that is directly delivered from the trans-Golgi network (TGN) to the endosomal/lysosomal system without prior appearance on the cell surface. Its short cytosolic domain of 11 residues encodes determinants for direct lysosomal sorting, endocytosis and, in polarized cells, basolateral targeting. We now characterize the structural requirements in the cytosolic domain required for sorting of lgp120 into the different pathways. Our results show that the cytoplasmic tail is sufficient to mediate direct transport from the trans-Golgi network (TGN) to lysosomes and that a G7-Y8-X-X-I11 motif is crucial for this sorting event. While G7 is only critical for direct lysosomal sorting in the TGN, Y8 and I11 are equally important for lysosomal sorting, endocytosis, and basolateral targeting. Thus, a small motif of five amino acids in the cytoplasmic tail of lgp120 can be recognized by the sorting machinery at several cellular locations and direct the protein into a variety of intracellular pathways.  相似文献   

13.
Plant cellulose biosynthesis is a complex process involving cellulose-synthase complexes (CSCs) and various auxiliary factors essential for proper orientation and crystallinity of cellulose microfibrils in the apoplast. Among them is KORRIGAN1 (KOR1), a type-II membrane protein with multiple N-glycans within its C-terminal cellulase domain. N-glycosylation of the cellulase domain was important for KOR1 targeting to and retention within the trans-Golgi network (TGN), and prevented accumulation of KOR1 at tonoplasts. The degree of successful TGN localization of KOR1 agreed well with in vivo-complementation efficacy of the rsw2–1 mutant, suggesting non-catalytic functions in the TGN. A dynamic interaction network involving microtubules, CSCs, KOR1, and currently unidentified glycoprotein component(s) likely determines stress-triggered re-organization of cellulose biosynthesis and resumption of cell-wall growth under stress.  相似文献   

14.
We have developed a family of cloning vectors that direct expression of fusion proteins that mimic aggregated immunoglobulin (IgG) (AIG) and immune complex function with respect to their interactions with FcγR and that allow for the inclusion and targeting of a second protein domain to cells expressing FcγR. This was accomplished by expressing multiple linear copies of the hinge and CH2 domains (HCH2) of human IgG1 fused to the framework region of human IgG1 . Convenient restriction sites allow for the facile introduction of additional amino-terminal domains. The resulting molecule is tripartite. The carboxyl-IgG1 framework domain provides stability and permits dimerization, and the intervening polymer provides increased effector function and targeting to FcγR while the amino-terminal domain can deliver an additional signal to cells expressing FcγR. To demonstrate the utility of the vectors, the extracellular domain of human CD8α was expressed as a HCH2 polymer fusion protein. The fusion proteins were secreted in useful amounts from polyclonal cell lines established in Sf9 cells following transfection and selection with G418. The biological activity of the recombinant CD8α-HCH2 polymers was determined and compared to those of AIG and an anti-CD16 monoclonal antibody using an in vitro assay. The activity of the fusion proteins positively correlates to the number of HCH2 units. The largest polymer tested was severalfold more potent than AIG at similar concentrations. The HCH2 polymers described here represent a new strategy in the design of recombinant proteins for the therapeutic targeting of FcγR in autoimmune disorders.  相似文献   

15.
Major-histocompatibility-complex (MHC) proteins are used to display, on the surface of a cell, peptides derived from foreign material - such as a virus - that is infecting that cell. Cytotoxic T lymphocytes then recognize and kill the infected cell. The HIV-1 Nef protein downregulates the cell-surface expression of class I MHC proteins, and probably thereby promotes immune evasion by HIV-1. In the presence of Nef, class I MHC molecules are relocalized from the cell surface to the trans-Golgi network (TGN) through as-yet-unknown mechanisms. Here we show that Nef-induced downregulation of MHC-I expression and MHC-I targeting to the TGN require the binding of Nef to PACS-1, a molecule that controls the TGN localization of the cellular protein furin. This interaction is dependent on Nef's cluster of acidic amino acids. A chimaeric integral membrane protein containing Nef as its cytoplasmic domain localizes to the TGN after internalization, in an acidic-cluster- and PACS-1-dependent manner. These results support a model in which Nef relocalizes MHC-I by acting as a connector between MHC-I's cytoplasmic tail and the PACS-1-dependent protein-sorting pathway.  相似文献   

16.
BIG2 and BIG1 are closely related guanine-nucleotide exchange factors (GEFs) for ADP-ribosylation factors (ARFs) and are involved in the regulation of membrane traffic through activating ARFs and recruiting coat protein complexes, such as the COPI complex and the AP-1 clathrin adaptor complex. Although both ARF-GEFs are associated mainly with the trans-Golgi network (TGN) and BIG2 is also associated with recycling endosomes, it is unclear whether BIG2 and BIG1 share some roles in membrane traffic. We here show that knockdown of both BIG2 and BIG1 by RNAi causes mislocalization of a subset of proteins associated with the TGN and recycling endosomes and blocks retrograde transport of furin from late endosomes to the TGN. Similar mislocalization and protein transport block, including furin, were observed in cells depleted of AP-1. Taken together with previous reports, these observations indicate that BIG2 and BIG1 play redundant roles in trafficking between the TGN and endosomes that involves the AP-1 complex.  相似文献   

17.
Pseudomonas exotoxin-based immunotoxins, including LMB-2 (antiTac(Fv)-PE38), are proposed to traffic to the trans-Golgi network (TGN) and move by a retrograde pathway to the endoplasmic reticulum, where they undergo translocation to the cytoplasm, a step that is essential for cytotoxicity. The retrograde transport pathways used by LMB-2 are not completely understood, so it is unclear if transit through specific organelles is critical for maximal cytotoxic activity. In this study, we used Chinese hamster ovary (CHO) cell lines that express chimeric constructs of CD25, the Tac antigen, attached to the cytoplasmic domain of the TGN-targeted transmembrane proteins, TGN38 and furin. These chimeras are both targeted to the TGN, but the itineraries they follow are quite different. LMB-2 was incubated with the two cell lines, and the efficiency of cell killing was determined using cell viability and cytotoxicity assays. LMB-2 that is targeted through the endocytic recycling compartment to the TGN via Tac-TGN38 kills the cells more efficiently than immunotoxins delivered through the late endosomes by Tac-furin. Although the processing to the 37 kDa active fragment was more efficient in Tac-furin cells than in Tac-TGN38 cells, this was not associated with enhanced cytotoxicity – presumably because the toxin was also degraded more rapidly in these cells. These data indicate that trafficking through specific organelles is an important factor modulating toxicity by LMB-2.  相似文献   

18.
Molecular mechanisms governing the anterograde trafficking of nascent G protein-coupled receptors (GPCRs) are poorly understood. Here, we have studied the regulation of cell surface transport of α2-adrenergic receptors (α2-ARs) by GGA3 (Golgi-localized, γ-adaptin ear domain homology, ADP ribosylation factor-binding protein 3), a multidomain clathrin adaptor protein that sorts cargo proteins at the trans-Golgi network (TGN) to the endosome/lysosome pathway. By using an inducible system, we demonstrated that GGA3 knockdown significantly inhibited the cell surface expression of newly synthesized α2B-AR without altering overall receptor synthesis and internalization. The receptors were arrested in the TGN. Furthermore, GGA3 knockdown attenuated α2B-AR-mediated signaling, including extracellular signal-regulated kinase 1/2 (ERK1/2) activation and cyclic AMP (cAMP) inhibition. More interestingly, GGA3 physically interacted with α2B-AR, and the interaction sites were identified as the triple Arg motif in the third intracellular loop of the receptor and the acidic motif EDWE in the VHS domain of GGA3. In contrast, α2A-AR did not interact with GGA3 and its cell surface export and signaling were not affected by GGA3 knockdown. These data reveal a novel function of GGA3 in export trafficking of a GPCR that is mediated via a specific interaction with the receptor.  相似文献   

19.
TIP47 (tail-interacting protein of 47 kDa) binds to the cytoplasmic domains of the cation-independent and cation-dependent mannose 6-phosphate receptors and is required for their transport from late endosomes to the trans Golgi network in vitro and in vivo. We report here a quantitative analysis of the interaction of recombinant TIP47 with mannose 6-phosphate receptor cytoplasmic domains. Recombinant TIP47 binds more tightly to the cation-independent mannose 6-phosphate receptor (K(D) = 1 microm) than to the cation-dependent mannose 6-phosphate receptor (K(D) = 3 microm). In addition, TIP47 fails to interact with the cytoplasmic domains of the hormone-processing enzymes, furin, phosphorylated furin, and metallocarboxypeptidase D, as well as the cytoplasmic domain of TGN38, proteins that are also transported from endosomes to the trans Golgi network. Although these proteins failed to bind TIP47, furin and TGN38 were readily recognized by the clathrin adaptor, AP-2. These data suggest that TIP47 recognizes a very select set of cargo molecules. Moreover, our data suggest unexpectedly that furin, TGN38, and carboxypeptidase D may use a distinct vesicular carrier and perhaps a distinct route for transport between endosomes and the trans Golgi network.  相似文献   

20.
Previous studies have shown that when the cytosolic domains of the type I membrane proteins TGN38 and lysosomal glycoprotein 120 (lgp120) are added to a variety of reporter molecules, the resultant chimeric molecules are localized to the trans-Golgi network (TGN) and to lysosomes, respectively. In the present study we expressed chimeric constructs of rat TGN38 and rat lgp120 in HeLa cells. We found that targeting information in the cytosolic domain of TGN38 could be overridden by the presence of the lumenal and transmembrane domains of lgp120. In contrast, the presence of the transmembrane and cytosolic domains of TGN38 was sufficient to deliver the lumenal domain of lgp120 to the trans-Golgi network. On the basis of steady-state localization of the various chimeras and antibody uptake experiments, we propose that there is a hierarchy of targeting information in each molecule contributing to sorting within the endocytic pathway. The lumenal and cytosolic domains of lgp120 contribute to sorting and delivery to lysosomes, whereas the transmembrane and cytosolic domains of TGN38 contribute to sorting and delivery to the trans-Golgi network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号