首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genotoxic effect of 8-methoxypsoralen damages (monoadducts and crosslinks) on plasmid DNA was studied. pBR322 DNA was treated with several concentrations of 8-methoxypsoralen plus fixed UVA light irradiation. After transformation into E. coli cells with different repair capacities (uvrA, recA and wild-type), plasmid survival and mutagenesis in ampicillin- and tetracycline-resistant genes were analysed. Results showed that crosslinks were extremely lethal in all 3 strains; indeed, it seemed that they were not repaired even in proficient bacteria. Monoadducts were also found to be lethal although they were removed to some extent by the excision-repair pathway (uvrA-dependent). Damaged plasmid DNA appeared to induce mutagenic repair, but only in the wild-type strain. In order to study the influence of the SOS response on plasmid recovery, preirradiation of the host cells was also performed. Preirradiation of the uvrA or wild-type strains significantly increased plasmid recovery. Consistent with the expectations of SOS repair, no effect was observed in preirradiated recA cells. Plasmid recovery in the excision-deficient strain was mainly achieved by the mutagenic repair of some fraction of the lesions, probably monoadducts. The greatest increase in plasmid recovery was found in the wild-type strain. This likely involved the repair of monoadducts and some fraction of the crosslinks. We conclude that repair in preirradiated repair-proficient cells is carried out mainly by an error-free pathway, suggesting enhancement of the excision repair promoted by the induction of SOS functions.  相似文献   

2.
3.

Introduction

Ataxia telangiectasia mutated and Rad3 Related (ATR) protein kinase is a key sensor of single-stranded DNA associated with stalled replication forks and repair intermediates generated during DNA repair. XRCC1 is a critical enzyme in single strand break repair and base excision repair. XRCC1-LIG3 complex is also an important contributor to the ligation step of the nucleotide excision repair response.

Methods

In the current study, we investigated synthetic lethality in XRCC1 deficient and XRCC1 proficient Chinese Hamster ovary (CHO) and human ovarian cancer cells using ATR inhibitors (NU6027). In addition, we also investigated the ability of ATR inhibitors to potentiate cisplatin cytotoxicity in XRCC1 deficient and XRCC1 proficient CHO and human cancer cells. Clonogenic assays, alkaline COMET assays, γH2AX immunocytochemistry, FACS for cell cycle as well as FITC-annexin V flow cytometric analysis were performed.

Results

ATR inhibition is synthetically lethal in XRCC1 deficient cells as evidenced by increased cytotoxicity, accumulation of double strand DNA breaks, G2/M cell cycle arrest and increased apoptosis. Compared to cisplatin alone, combination of cisplatin and ATR inhibitor results in enhanced cytotoxicity in XRCC1 deficient cells compared to XRCC1 proficient cells.

Conclusions

Our data provides evidence that ATR inhibition is suitable for synthetic lethality application and cisplatin chemopotentiation in XRCC1 deficient ovarian cancer cells.  相似文献   

4.
Glycidamide (GA)-induced mutagenesis in mammalian cells is not very well understood. Here, we investigated mutagenicity and DNA repair of GA-induced adducts utilizing Chinese hamster cell lines deficient in base excision repair (BER), nucleotide excision repair (NER) or homologous recombination (HR) in comparison to parent wild-type cells. We used the DRAG assay in order to map pathways involved in the repair of GA-induced DNA lesions. This assay utilizes the principle that a DNA repair deficient cell line is expected to be affected in growth and/or survival more than a repair proficient cell. A significant induction of mutations by GA was detected in the hprt locus of wild-type cells but not in BER deficient cells. Cells deficient in HR or BER were three or five times, respectively, more sensitive to GA in terms of growth inhibition than were wild-type cells. The results obtained on the rate of incisions in BER and NER suggest that lesions induced by GA are repaired by short patch BER rather than long patch BER or NER. Furthermore, a large proportion of the GA-induced lesions gave rise to strand breaks that are repaired by a mechanism not involving PARP. It is suggested that these strand breaks, which might be the results from alkylation of the backbone phosphate, are misrepaired by HR during replication thereby leading to a clastogenic rather than a mutagenic pathway. The type of lesion responsible for the mutagenic effect of GA cannot be concluded from the results presented in this study.  相似文献   

5.
UV-induced pyrimidine dimers were excised from the DNA of wild-type and four mutant strains of Ustilago maydis. Excision was partially dose dependent. The kinetics of excision differed in recombination deficient strains (rec 1 and rec 2) from those found in a recombination proficient radiation-sensitive strain (uvs 3). At fluences above 100 J-m-2 excision was saturated in uvs 3 but not in rec 1 or rec 2. Fluences above 300 J-m-2 started to saturate excision in wild-type. pol1-1, a temperature-sensitive DNA polymerase mutant, was excision proficient at both the permissive (22 degree) and restrictive (32 degree) temperatures. Wild-type cells were observed to excise CC before CT or TT in high dose experiments.  相似文献   

6.
Glycidamide (GA)-induced mutagenesis in mammalian cells is not very well understood. Here, we investigated mutagenicity and DNA repair of GA-induced adducts utilizing Chinese hamster cell lines deficient in base excision repair (BER), nucleotide excision repair (NER) or homologous recombination (HR) in comparison to parent wild-type cells. We used the DRAG assay in order to map pathways involved in the repair of GA-induced DNA lesions. This assay utilizes the principle that a DNA repair deficient cell line is expected to be affected in growth and/or survival more than a repair proficient cell.A significant induction of mutations by GA was detected in the hprt locus of wild-type cells but not in BER deficient cells. Cells deficient in HR or BER were three or five times, respectively, more sensitive to GA in terms of growth inhibition than were wild-type cells. The results obtained on the rate of incisions in BER and NER suggest that lesions induced by GA are repaired by short patch BER rather than long patch BER or NER. Furthermore, a large proportion of the GA-induced lesions gave rise to strand breaks that are repaired by a mechanism not involving PARP. It is suggested that these strand breaks, which might be the results from alkylation of the backbone phosphate, are misrepaired by HR during replication thereby leading to a clastogenic rather than a mutagenic pathway. The type of lesion responsible for the mutagenic effect of GA cannot be concluded from the results presented in this study.  相似文献   

7.
Using a human fibroblast strain deficient in glutathione synthetase and a related proficient control strain, the role of glutathione (GSH) in repair of potentially lethal damage (PLD) has been investigated in determining survival by plating cells immediately or 24 h after irradiation. After oxic or hypoxic irradiation, both cell strains repair radiation-induced damage. However, under hypoxic conditions, the proficient cells repair PLD as well as under oxic conditions while the deficient cells repair less PLD after irradiation under hypoxic than under oxic conditions. Therefore, the oxygen enhancement ratio (o.e.r.) for proficient cells is similar whether the cells are plated immediately or 24 h later (2.0 and 2.13, respectively). In contrast, the o.e.r. for deficient cells is lower when the cells are plated 24 h after irradiation than when they are plated immediately thereafter (1.16 as compared to 1.55). The results indicate that GSH is involved in PLD repair and, in particular, in the repair of damage induced by radiation delivered under hypoxic conditions.  相似文献   

8.
Mutations induced by polycyclic aromatic hydrocarbons (PAH) are expected to be produced when error-prone DNA replication occurs across unrepaired DNA lesions formed by reactive PAH metabolites such as diol epoxides. The mutagenicity of the two PAH-diol epoxides (+)-anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) and (+/-)-anti-11,12-dihydroxy-13,14-epoxy-11,12,13,14-tetrahydrodibenzo[a,l]pyrene (DBPDE) was compared in nucleotide excision repair (NER) proficient and deficient hamster cell lines. We applied the (32)P-postlabelling assay to analyze adduct levels and the hprt gene mutation assay for monitoring mutations. It was found that the mutagenicity per target dose was 4 times higher for DBPDE compared to BPDE in NER proficient cells while in NER deficient cells, the mutagenicity per target dose was 1.4 times higher for BPDE. In order to investigate to what extent the mutagenicity of the different adducts in NER proficient cells was influenced by repair or replication bypass, we measured the overall NER incision rate, the rate of adduct removal, the rate of replication bypass and the frequency of induced recombination in the hprt gene. The results suggest that NER of BPDE lesions are 5 times more efficient than for DBPDE lesions, in NER proficient cells. However, DBPDE adducts block replication more efficiently and also induce 6 times more recombination events in the hprt gene than adducts of BPDE, suggesting that DBPDE adducts are, to a larger extent, bypassed by homologous recombination. The results obtained here indicate that the mutagenicity of PAH is influenced not only by NER, but also by replication bypass fidelity. This has been postulated earlier based on results using in vitro enzyme assays, but is now also being recognized in terms of forward mutations in intact mammalian cells.  相似文献   

9.
In Escherichia coli, bulky DNA lesions are repaired primarily by nucleotide excision repair (NER). Unrepaired lesions encountered by DNA polymerase at the replication fork create a blockage which may be relieved through RecF-dependent recombination. We have designed an assay to monitor the different mechanisms through which a DNA polymerase blocked by a single AAF lesion may be rescued by homologous double-stranded DNA sequences. Monomodified single-stranded plasmids exhibit low survival in non-SOS induced E. coli cells; we show here that the presence of a homologous sequence enhances the survival of the damaged plasmid more than 10-fold in a RecA-dependent way. Remarkably, in an NER proficient strain, 80% of the surviving colonies result from the UvrA-dependent repair of the AAF lesion in a mechanism absolutely requiring RecA and RecF activity, while the remaining 20% of the surviving colonies result from homologous recombination mechanisms. These results uncover a novel mechanism - RecA-mediated excision repair - in which RecA-dependent pairing of the mono-modified single-stranded template with a complementary sequence allows its repair by the UvrABC excinuclease.  相似文献   

10.
S B Waters  S A Akman 《Mutation research》2001,487(3-4):109-119
The double mismatch reversion (DMR) assay quantifies the repair of G:T mispairs exclusively by base excision repair in vivo. Synthetic oligonucleotides containing two G:T mispairs on opposite strands were placed into the suppressor tRNA gene supF in the shuttle plasmid pDMR. Placement of two mispairs on opposite strands of supF creates a one to one correspondence between the number of correct repair events prior to replication in which G:T mispairs are converted to G:C base pairs and the number of post-replication progeny plasmids with functional supF. Replication of unrepaired or incorrectly repaired mispairs cannot produce progeny plasmids containing functional supF. Indeed, direct transformation of Escherichia coli strain MBL50, which reports the functional status of supF, with pDMR constructs containing two G:T or G:G mispairs yielded <0.5% wild-type supF-containing colonies. In contrast, passage of G:T mispair-containing pDMR constructs through human 5637 bladder carcinoma cells for 48h prior to plasmid recovery and transformation of the reporter E. coli strain MBL50 produced 47% wild-type supF-containing colonies. This finding was indicative of repair prior to the onset of replication in 5637 cells. However, passage of G:G mispair-containing pDMR constructs through 5637 cells yielded <0.5% wild-type supF-containing colonies. Moreover, no difference was observed in the rate of G:T mispair repair by HCT 116 colorectal carcinoma cells deficient in long-patch mismatch repair and a long-patch mismatch repair proficient HCT 116 subline. These data demonstrate that repair measured by the DMR assay is exclusively attributable to short-patch pathways. The DMR assay proved useful in the analysis of the effect of the base 5' to a mispaired G on the rate of G:T base excision repair by 5637 cells, indicating the sequence preference CpG approximately 5mCpG>TpG>GpG approximately ApG, and in the comparison of G:T base excision repair rates between cell lines.  相似文献   

11.
Mutations at the gyrB locus were found to decrease the degree of supercoiling of the Escherichia coli chromosome. The effect of a gyrB mutation on the repair of ultraviolet-induced deoxyribonucleic acid damage was studied by following the killing of strains of E. coli K-12 proficient and deficient in deoxyribonucleic acid repair. The effectiveness of both excision and postreplication types of deoxyribonucleic acid repair was found to be altered by this mutation, the former being apparently enhanced and the latter impaired.  相似文献   

12.
Somatic hypermutation (SHM) is a fundamental process in immunoglobulin gene maturation that results in increased affinity of antibodies toward antigens. In one hypothesis explaining SHM in human B cells, the process is initiated by enzymatic deamination of cytosine to uracil in the immunoglobulin gene V-region and this in turn triggers mutation-prone forms of uracil-DNA base excision repair (BER). Yet, an uncertainty with this model is that BER of uracil-DNA in mammalian cells is generally error-free, wherein DNA polymerase beta (pol beta) conducts gap-filling synthesis by insertion of bases according to Watson-Crick rules. To evaluate this inconsistency, we examined pol beta expression in various SHM proficient human BL2 cell line subclones. We report that expression of pol beta in SHM proficient cell lines was strongly down-regulated. In contrast, in other BL2 subclones, we found that SHM was deficient and that pol beta expression was much higher than in the SHM proficient subclones. We also found that overexpression of recombinant human pol beta in a SHM proficient subclone abrogated its capacity for SHM. These results suggest that down-regulation of the normal BER gap-filling DNA polymerase, pol beta, accompanies induced SHM in BL2 cells. This is consistent with the hypothesis that normal error-free BER must be silenced to make way for an error-prone BER process that may be required during somatic hypermutation.  相似文献   

13.
Antisense and mutated cDNA of the human excision repair gene ERCC-1 were overexpressed in repair proficient HeLa cells by means of an Epstein-Barr-virus derived cDNA expression vector. Whereas antisense RNA did not influence the survival of the transfected cells, a mutated cDNA generating an ERCC-1 protein with two extra amino acids in a conserved region of its C-terminal part resulted in a significant sensitization of the HeLa transfectants to mitomycin C-induced damage. These results suggest that overexpression of the mutated ERCC-1 protein interferes with proper functioning of the excision repair pathway in repair proficient cells and is compatible with a model in which the mutated ERCC-1 protein competes with the wild-type polypeptide for a specific step in the repair process or for occupation of a site in a repair complex. Apparently, this effect is more pronounced for mitomycin C induced crosslink repair than for UV-induced DNA damage.  相似文献   

14.
The removal of O6-methylguanine by human lymphoid cells corresponded, with certain assumptions, to a second-order chemical reaction in any given cell. There was a spectrum of proficiency in this respect for a considerable number of cells originating from different individuals and it was found that patients with diseases associated with autoimmunity tended to fall into the less proficient groups. E-B virus-induced lymphoid cell lines, derived from proficient, but not relatively deficient, peripheral blood lymphocytes, always (in 9/9 cases) reflected the level of proficiency of the donor lymphocytes with respect to removal of O6-methylguanine. Thus while proficient lymphocytes always produced proficient cell lines, deficient lymphocytes, in 3/8 cases, gave rise to more proficient cell lines. No evidence was found that groups of individuals exist who lack ability to remove 3-methyladenine from DNA, either from their blood lymphocytes or derived lymphoid cell lines.  相似文献   

15.
16.
Electroporation of plasmid and chromosomal DNAs were tested in Haemophilus influenzae because of an interest in introducing DNA into mutants that are deficient in competence for transformation. The initial experiments were designed to investigate and optimize conditions for electroporation of H. influenzae. Plasmid DNA was introduced into the competence proficient strain Rd and its competence-deficient uptake mutants com-52, com-59, and com-88, and the recombination deficient mutant rec1. Plasmid DNA could also be electroporated into the non-transforming strains Ra, Rc, Re and Rf. Plasmid DNA without sequences that are involved in tight binding (uptake) of DNA by competent cells of H. influenzae Rd was electroporated into both competent and non-competent cells. Competent cells were several orders of magnitude less efficient than non-competent cells for electroporation of plasmid DNAs. Electroporation of H. influenzae chromosomal DNA was not successful. Low levels of integration of chromosomal markers were observed following electroporation and these could be ascribed to transformation. The treatment of cells with DNasel following electroporation separated the effects due to electroporation from those due to transformation. The DNasel treatment did not affect the efficiency of plasmid incorporation, but severely restricted effects due to natural DNA transformation.  相似文献   

17.
The transporter associated with antigen processing (TAP) and the major histocompatibility complex class I (MHC-I), two important components of the MHC-I antigen presentation pathway, are often deficient in tumor cells. The restoration of their expression has been shown to restore the antigenicity and immunogenicity of tumor cells. However, it is unclear whether TAP and MHC-I expression in tumor cells can affect the induction phase of the T cell response. To address this issue, we expressed viral antigens in tumors that are either deficient or proficient in TAP and MHC-I expression. The relative efficiency of direct immunization or immunization through cross-presentation in promoting adaptive T cell responses was compared. The results demonstrated that stimulation of animals with TAP and MHC-I proficient tumor cells generated antigen specific T cells with greater killing activities than those of TAP and MHC-I deficient tumor cells. This discrepancy was traced to differences in the ability of dendritic cells (DCs) to access and sample different antigen reservoirs in TAP and MHC-I proficient versus deficient cells and thereby stimulate adaptive immune responses through the process of cross-presentation. In addition, our data suggest that the increased activity of T cells is caused by the enhanced DC uptake and utilization of MHC-I/peptide complexes from the proficient cells as an additional source of processed antigen. Furthermore, we demonstrate that immune-escape and metastasis are promoted in the absence of this DC 'arming' mechanism. Physiologically, this novel form of DC antigen sampling resembles trogocytosis, and acts to enhance T cell priming and increase the efficacy of adaptive immune responses against tumors and infectious pathogens.  相似文献   

18.
Repair kinetics after saturating doses of ultraviolet radiation (UV), N-acetoxy-2-acetylaminofluorene (AAAF), and combinations of both agents were studied in human fibroblasts proficient and deficient in excision repair, and in Chinese hamster cells (V-79) deficient in excision repair. Three techniques were used: unscheduled DNA synthesis, photolysis of DNA repaired in the presence of bromodeoxyuridine (BrdUrd), and measurements of sites sensitive to a UV-endonuclease. The repair rate appears to be approximately constant during the first few hours after treatment. Later there is a decrease with time; the magnitude of the decrease depends on the cell line. Our data show that the decrease in repair observed in repair-deficient cells treated with combinations of both agents as compared to separate treatments is due neither to the cytotoxic effects of the agents used, nor to a shutoff of the repair system by the high concentrations of AAAF employed.  相似文献   

19.
The ability of plasmids carrying truncated recA genes to sensitize recA+ cells to UV-irradiation was dependent upon the size of the cloned recA gene fragment. Radiosensitization correlated with the inhibition of recombinational repair, and the in vivo reduction of recA protein recombinase activity, as measured by lambda bio 11 plating efficiency. W-reactivation was also abolished by the radiosensitizing plasmids, whilst DNA degradation control, naladixic acid induced filamentation and lambda induction were unaffected. UV-induced mutagenesis in excision proficient E. coli was unaffected, whilst excision deficient strains were hypermutable. It is suggested that these effects of plasmids bearing 22% or more of the recA gene are the result of the interaction of full-sized and truncated protein subunits to generate multimers unable to catalyze recombination.  相似文献   

20.
Tamoxifen, a breast cancer drug, has recently been approved for the chemoprevention of this disease. However, tamoxifen causes hepatic carcinomas in rats through a genotoxic mechanism and increases the risk of endometrial tumors in women. DNA adducts have been detected at low levels in human endometrium, and there is much interest in determining whether DNA damage plays a role in tamoxifen-induced endometrial carcinogenesis. This study investigates the mutagenicity of tamoxifen DNA adducts formed by alpha-acetoxytamoxifen, a reactive ester producing the major DNA adduct formed in livers of tamoxifen-treated rats. pSP189 plasmid DNA containing the supF gene was treated with alpha-acetoxytamoxifen and adduct levels (0.5-8.0 adducts per plasmid) determined by (32)P-postlabeling. Adducted plasmids were transfected into nucleotide excision repair proficient (GM00637) or deficient (GM04429, XPA) human fibroblasts. After replication, plasmids were recovered and screened in indicator bacteria. Relative mutation frequencies increased with the adduct level, with 1.3-3.6-fold higher numbers of mutations in the XP cells compared to the GM00637 cells, indicating that NER plays a significant role in the removal of these particular tamoxifen DNA adducts. The majority of sequence alterations (91-96%) occurred at GC base pairs, as did mutation hotspots, although the type and position of mutations was cell-specific. In both cell lines, as the adduct level increased, the proportion of GC --> AT transitions decreased and GC --> TA transversions, mutations known to arise from the major tamoxifen adducts, increased. Given the high mutagenicity of dG-N(2)-tamoxifen adducts, if not excised, they may potentially contribute to the initiation of endometrial cancer in women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号