首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Telomere addition by telomerase requires an internal templating sequence located in the RNA subunit of telomerase. The correct boundary definition of this template sequence is essential for the proper addition of the nucleotide repeats. Incorporation of incorrect telomeric repeats onto the ends of chromosomes has been shown to induce chromosomal instability in ciliate, yeast and human cells. A 5′ template boundary defining element (TBE) has been identified in human, yeast and ciliate telomerase RNAs. Here, we report the solution structure of the TBE element (helix II) from Tetrahymena thermophila telomerase RNA. Our results indicate that helix II and its capping pentaloop form a well-defined structure including unpaired, stacked adenine nucleotides in the stem and an unusual syn adenine nucleotide in the loop. A comparison of the T.thermophila helix II pentaloop with a pentaloop of the same sequence found in the 23S rRNA of the Haloarcula marismortui ribosome suggests possible RNA and/or protein interactions for the helix II loop within the Tetrahymena telomerase holoenzyme.  相似文献   

4.
5.
6.
Telomeres, the G-rich sequences found at the ends of eukaryotic chromosomes, ensure chromosome stability and prevent sequence loss from chromosome ends during DNA replication. During macronuclear development in Tetrahymena, the chromosomes fragment into pieces ranging from 20 kb to 1,500 kb. Tetrahymena telomerase, a ribonucleoprotein, adds telomeric (TTGGGG)n repeats onto telomeres and onto the newly generated macronuclear DNA ends. We have investigated whether telomerase RNA levels increase during macronuclear development, since such an increase might be expected during chromosomal fragmentation. The steady-state level of the telomerase RNA component was used to estimate the abundance of telomerase present in mating and nonmating Tetrahymena. Northern blot analysis revealed that in vegetatively growing Tetrahymena, there were 18,000-40,000 copies of telomerase RNA per cell. In mating cultures, the levels of RNA increased 2- to 5-fold at 9-15 h, and 1.5- to 3.5-fold in starved nonmating cultures. This increase in telomerase RNA paralleled telomerase activity, which also increased slightly in mating and starved nonmating cells.  相似文献   

7.
K Collins  C W Greider 《The EMBO journal》1995,14(21):5422-5432
Telomerase is a ribonucleoprotein (RNP) DNA polymerase involved in telomere synthesis. A short sequence within the telomerase RNA component provides a template for de novo addition of the G-rich strand of a telomeric simple sequence repeat onto chromosome termini. In vitro, telomerase can elongate single-stranded DNA primers processively: one primer can be extended by multiple rounds of template copying before product dissociation. Telomerase will incorporate dNTPs or ddNTPs and will elongate any G-rich, single-stranded primer DNA. In this report, we show that Tetrahymena telomerase was able to incorporate a ribonucleotide, rGTP, into product polynucleotide. Synthesis of the product [d(TT)r(GGGG)]n was processive, suggesting that the chimeric product remained associated with the enzyme both at the active site and at a second, previously characterized, template-independent product binding site. As predicted by this finding, RNA-containing oligonucleotides served as primers for elongation. More than 3 nt of RNA at a primer 3' end decreased the quantity of product synthesis but increased the affinity of the primer for telomerase. Thus, RNA-containing primers were effective as competitive inhibitors of DNA primer elongation by telomerase. These results support the possible evolutionary origin of telomerase as an RNA-dependent RNA polymerase.  相似文献   

8.
9.
10.
Telomere-specific repeat sequences are essential for chromosome end stability. Telomerase maintains telomere length by adding sequences de novo onto chromosome ends. The template domain of the telomerase RNA component dictates synthesis of species-specific telomeric repeats and other regions of the RNA have been suggested to be important for enzyme structure and/or catalysis. Using enzyme reconstituted in vitro with RNAs containing deletions or substitutions we identified nucleotides in the RNA component that are important for telomerase activity. Although many changes to conserved features in the RNA secondary structure did not abolish enzyme activity, levels of activity were often greatly reduced, suggesting that regions other than the template play a role in telomerase function. The template boundary was only altered by changes in stem II that affected the conserved region upstream of the template, not by changes in other regions, such as stems I, III and IV, consistent with a role of the conserved region in defining the 5' boundary of the template. Surprisingly, telomerase RNAs with substitutions or deletion of residues potentially abolishing the conserved pseudoknot structure had wild-type levels of telomerase activity. This suggests that this base pairing interaction may not be required for telomerase activity per se but may be conserved as a regulatory site for the enzyme in vivo.  相似文献   

11.
12.
13.
14.
Telomerase is an enzyme that is essential for the replication and maintenance of chromosomal termini. It is a ribonucleoprotein consisting of a catalytic subunit, one or more associated proteins, and an integral RNA subunit that serves as a template for the synthesisof telomeric repeats. We identified a Tetrahymena telomerase RNA-protein complex by an electrophoretic mobility shift assay, using telomerase partially purified from whole cell extracts and radiolabeled, in vitro transcribed wild-type Tetrahymena telomerase RNA. Complex formation was specific as unlabeled Tetra-hymena telomerase RNA, but not Escherichia coli ribo-somal RNAs, competitively inhibited complex formation. Binding required concentrations of MgCl2of at least 10 mM and occurred over a wide range of potassium glutamate concentrations (20-220 mM). The RNA-protein complex was optimally reconstituted with a 30 degrees C preincubation for 相似文献   

15.
Telomerase is a ribonucleoprotein enzyme that maintains chromosome ends through de novo addition of telomeric DNA. The ability of telomerase to interact with its DNA substrate at sites outside its catalytic centre (‘anchor sites’) is important for its unique ability to undergo repeat addition processivity. We have developed a direct and quantitative equilibrium primer-binding assay to measure DNA-binding affinities of regions of the catalytic protein subunit of recombinant Tetrahymena telomerase (TERT). There are specific telomeric DNA-binding sites in at least four regions of TERT (the TEN, RBD, RT and C-terminal domains). Together, these sites contribute to specific and high-affinity DNA binding, with a Kd of ~8 nM. Both the Km and Kd increased in a stepwise manner as the primer length was reduced; thus recombinant Tetrahymena telomerase, like the endogenous enzyme, contains multiple anchor sites. The N-terminal TEN domain, which has previously been implicated in DNA binding, shows only low affinity binding. However, there appears to be cooperativity between the TEN and RNA-binding domains. Our data suggest that different DNA-binding sites are used by the enzyme during different stages of the addition cycle.  相似文献   

16.
17.
Template definition by Tetrahymena telomerase reverse transcriptase   总被引:4,自引:0,他引:4       下载免费PDF全文
Miller MC  Liu JK  Collins K 《The EMBO journal》2000,19(16):4412-4422
  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号