首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Substance P (SP) immunoreactivity in the guinea pig retina was studied by light and electron microscopy. The morphology and distribution of SP-immunoreactive neurons was defined by light microscopy. The SP-immunoreactive neurons formed one population of amacrine cells whose cell bodies were located in the proximal row of the inner nuclear layer. A single dendrite emerged from each soma and descended through the inner plexiform layer toward the ganglion cell layer. SP-immunoreactive processes ramified mainly in strata 4 and 5 of the inner plexiform layer. SP-immunoreactive amacrine cells were present at a higher density in the central region around the optic nerve head and at a lower density in the peripheral region of the retina. The synaptic connectivity of SP-immunoreactive amacrine cells was identified by electron microscopy. SP-labeled amacrine cell processes received synaptic inputs from other amacrine cell processes in all strata of the inner plexiform layer and from bipolar cell axon terminals in sublamina b of the same layer. The most frequent postsynaptic targets of SP-immunoreactive amacrine cells were the somata of ganglion cells and their dendrites in sublamina b of the inner plexiform layer. Amacrine cell processes were also postsynaptic to SP-immunoreactive neurons in this sublamina. No synaptic outputs onto the bipolar cells were observed.  相似文献   

2.
Summary In the guinea-pig hypothalamus, a group of enkephalinergic cells forms a well-circumscribed nuclear area called the magnocellular dorsal nucleus (MDN). This nucleus gives rise to a prominent projection to the lateral spetum: the hypothalamo-septal enkephalinergic pathway. In the present study, MDN neurons visualized by Golgi impregnation were subjected to morphological analysis in order to define the potential segregation of cellular types within the MDN. This study was complemented by additional observations of MDN neurons intracellularly injected by Lucifer yellow (LY) or horseradish peroxidase (HRP) during the in vitro incubation of hypothalamic slices. The following results were obtained from the analysis of 200 neurons: 163 Golgi-impregnated cells plus 37 injected cells (LY=14; HRP=23). Thirteen HRP-injected cells were precisely located in the MDN and 10 were located in the perifornical area surrounding the MDN. Four different cellular types were identified. Type-I neurons (41%) displayed a globular perikaryon, a variable number of primary dendrites that were poorly ramified, no preferential orientation, and an axon emerging from the perikaryon. Type-II neurons (30.5%) had a triangular perikaryon, three well-ramified primary dendrites, an orientation perpendicular to the third ventricle, and an axon emerging from the perikaryon. Type-III neurons (22%) exhibited a spindle-shaped perikaryon, two opposed well-ramified primary dendrites, an orientation perpendicular to the third ventricle, and an axon emerging from a primary dendrite. Type-IV neurons (6.5%), showed a globular perikaryon, a variable number of primary dendrites, poorly ramified dendrites, an orientation parallel to the third ventricle, and an axon whose orientation could not be identified. Neurons labeled after intracellular injection belonged to the first three cellular types.  相似文献   

3.
Immunocytochemical methods with an antiserum against neuronal nitric oxide synthase (NOS) were applied to identify the morphology and synaptic connectivity of NOS-like immunoreactive neurons in the guinea pig retina. In the present study, two types of amacrine cells were labeled with anti-NOS antisera. Type 1 cells had large somata located in the inner nuclear layer (INL) with long, sparsely branched processes ramifying mainly in stratum 3 of the inner plexiform layer (IPL). The somata of type 2 cells (smaller diameters) were located in the INL. Some displaced amacrine cells in the ganglion cell layer were labeled. The soma size of the displaced amacrine cells was similar to that of the type 2 amacrine cells. However, processes originating from type 2 amacrine cells and displaced amacrine cells stratified mainly in strata 1 and 5, respectively. Some cone bipolar cells were weakly NOS-immunoreactive. The synaptic connectivity of NOS-like immunoreactive amacrine cells was identified in the IPL by electron microscopy. NOS-labeled amacrine cell processes received synaptic input from other amacrine cell processes and bipolar cell axon terminals in all strata of the IPL. The most frequent postsynaptic targets of NOS-immunoreactive amacrine cells were other amacrine cell processes. Cone bipolar cells were postsynaptic to NOS-labeled amacrine cells in all strata of the IPL. Labeled amacrine cells synapsing onto ganglion cells were found only in sublamina b. A few synaptic contacts were observed between labeled cell processes. In the outer plexiform layer, dendrites of labeled bipolar cells made basal contact with cone pedicles or formed a synaptic triad opposed to a synaptic ribbon of cone pedicles.  相似文献   

4.
Giant cells containing S-100 protein of the lymphoid tissues in the guinea pig were studied by immunohistochemistry using S-100 antiserum. S-100-immunoreactive giant cells were dendritic in shape, contained one or two irregular-shaped, euchromatic nuclei, phagosomes of various diameter, numerous mitochondria and microfilaments in the perikaryon, and extended cell processes free of cell organelles. These cells predominantly lined the superficial cortex facing the subcapsular sinus, were less numerously scattered in the medulla of lymph nodes and located at the marginal zone of the spleen. They also stained with S-100 alpha monoclonal antiserum and showed active phagocytosis for aldehyde-fixed red cells or colloidal carbon in the popliteal lymph node and spleen. S-100-immunoreactive giant cells also appeared in the corticomedullary zone of the thymus and in the interfollicular area of the Peyer's patches of the gut. Small sinus macrophages, which exhibited active phagocytosis for colloidal carbon but were less active for red cells in the popliteal lymph node and spleen, were not stained with S-100 antiserum. These findings indicate that S-100-immunoreactive giant cells of the lymph node and spleen are a subpopulation of macrophages different from S-100-negative cells of the small type.  相似文献   

5.
6.
We examined dopaminergic neurons in the guinea pig retina; antisera against tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH), phenylethanolamine N-methyltransferase (PNMT) and an antiserum against gamma-aminobutyric acid (GABA) were used. In the present study, two types of amacrine cells were labeled with an anti-TH antiserum. However, no DBH and PNMT immunoreactivities were seen. The type 1 cell had a larger-sized soma located in the inner nuclear layer with processes ramifying mainly in stratum 1 of the inner plexiform layer (IPL). The type 2 cell had a smaller-sized soma and processes branching in stratum 3 of the IPL. The mean densities were 56.4 +/- 11.5/mm2 for the type 1 cell and 166.6 +/- 30.3/mm2 for the type 2 cell. Double immunocytochemistry using an antiserum against GABA revealed that while none of the type 1 cells showed GABA immunoreactivity, all of the type 2 cells displayed GABA immunoreactivity. Our results suggest that, in the guinea pig retina, the type 1 amacrine cells are pure dopaminergic and the type 2 cells are dopaminergic elements that use GABA as their second transmitter.  相似文献   

7.
Summary Immunoreactive vasoactive intestinal polypeptide (VIP) was detected in a population of amacrine cells in the retina of the rat. Processes of these cells reach both the inner and outer half of the inner plexiform layer where they form sublayers. The VIP neurons are different from previously known amacrine cell types.  相似文献   

8.
We investigated the morphology and synaptic connections of neuropeptide Y (NPY)-containing neurons in the guinea pig retina by immunocytochemistry, using antisera against NPY. Specific NPY immunoreactivity was localized to a population of wide-field and regularly spaced amacrine cells with processes ramifying mainly in stratum 1 of the inner plexiform layer (IPL). Double-label immunohistochemistry demonstrated that all NPY-immunoreactive cells possessed glutamic acid decarboxylase 65 immunoreactivity. The synaptic connectivity of NPY-immunoreactive amacrine cells was identified in the IPL by electron microscopy. The NPY-labeled amacrine cell processes received synaptic input from other amacrine cell processes and bipolar cell axon terminals in stratum 1 of the IPL. The most frequent postsynaptic targets of NPY-immunoreactive amacrine cells were other amacrine cell processes. Synaptic outputs to bipolar cells were also observed in a small number of cases. This finding suggests that NPY-containing amacrine cells may influence inner retinal circuitry in stratum 1 of the IPL, thus mediating visual processing.  相似文献   

9.
Membrane currents elicited by iontophoretic applications of acetylcholine (ACh currents) were recorded from neurons of the guinea pig submucous plexus using a whole-cell patch-clamp recording technique. The ACh currents declined to 5–20% of their peak amplitude during about 2 sec-long application of ACh. After the end of ACh application, a transient increase of the ACh current (the aftercurrent, AC) was observed. The most probable mechanisms responsible for the ACh current decline and for the appearance of the AC are transitions of nicotinic ACh receptors first to a desensitized state, and then to the state with an open ionic channel, respectively.Neirofiziologiya/Neurophysiology, Vol. 25, No. 4, pp. 291–296, July–August, 1993  相似文献   

10.
Quantitative characteristics of spatial organization of neuron populations of vestibular nuclei, forming projections into the spinal cord, were obtained in experiments on guinea pigs by the retrograde axonal transport of horseradish peroxidase, injected unilaterally into the upper cervical and lower thoracic segments of the spinal cord, method. Neurons accumulating the enzyme were found ipsilaterally in the lateral vestibular nucleus and bilaterally in the descending and medial vestibular nuclei. The distribution of vestibulospinal neurons along the length of the spinal cord was studied. Neuron populations of the medial and descending vestibular nuclei whose projection regions coincide with those of fibers of the corticospinal and rubrospinal systems were discovered. The role of vestibulospinal systems in the structure of supra-segmental control of the neuronal apparatus of the spinal cord is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 23, No. 3, pp. 353–362, May–June, 1991.  相似文献   

11.
Using immunocytochemistry, we have investigated the localization of CD15 in the rat retina. In the present study, two types of amacrine cell in the inner nuclear layer (INL) and some cells in the ganglion cell layer were labeled with anti-CD15 antisera. Type 1 amacrine cells have large somata located in the INL, with long and branched processes ramifying mainly in stratum 3 of the inner plexiform layer (IPL). Type 2 cells have a smaller soma and processes branching in stratum 1 of the IPL. A third population showing CD15 immunoreactivity was a class of displaced amacrine cells in the ganglion cell layer. The densities of type 1 and type 2 amacrine cells were 166/mm(2) and 190/mm(2) in the central retina, respectively. The density of displaced amacrine cells was 195/mm(2). Colocalization experiments demonstrated that these CD15-immunoreactive cells exhibit gamma-aminobutyric acid and neuronal nitric oxide synthase (nNOS) immunoreactivities. Thus, the same cells of the rat retina are labeled by anti-CD15 and anti-nNOS antisera and these cells constitute a subpopulation of GABAergic amacrine cells.  相似文献   

12.
This study examined whether myenteric neurons activate submucosal vasodilator pathways in in vitro combined submucosal-myenteric plexus preparations from guinea pig ileum. Exposed myenteric ganglia were electrically stimulated, and changes in the outside diameter of submucosal arterioles were monitored in adjoining tissue by videomicroscopy. Stimulation up to 18 mm from the recording site evoked large TTX-sensitive vasodilations in both orad and aborad directions. In double-chamber baths, which isolated the stimulating myenteric chamber from the recording submucosal chamber, hexamethonium or the muscarinic antagonist 4-diphenylacetoxy-N-(2-chloroethyl)-piperdine hydrochloride (4-DAMP) almost completely blocked dilations when superfused in the submucosal chamber. When hexamethonium was placed in the myenteric chamber approximately 50% of responses were hexamethonium sensitive in both orad and aboard orientations. The addition of 4-DAMP or substitution of Ca(2+)-free, 12 mM Mg(2+) solution did not cause further inhibition. These results demonstrate that polysynaptic pathways in the myenteric plexus projecting orad and aborad can activate submucosal vasodilator neurons. These pathways could coordinate intestinal blood flow and motility.  相似文献   

13.
14.
Summary Two populations of neurons displaying somatostatin-like immunoreactivity were detected immunohistochemically in the guinea pig striatum using a monoclonal antibody. Sparse, well-stained neurons similar to those described in other species were observed throughout the guinea pig caudate-putamen. These neurons contained both neuropeptide Y and NADPH-diaphorase in addition to somatostatin. A second large population of somatostatin immunoreactive neurons in which these other substances did not coexist was found within the putamen.  相似文献   

15.
The morphology of calretinin- and tyrosine hydroxylase-immunoreactive (IR) neurons in adult pig retina was studied. These neurons were identified using antibody immunocytochemistry. Calretinin immunoreactivity was found in numerous cell bodies in the ganglion cell layer. Large ganglion cells, however, were not labeled. In the inner nuclear layer, the regular distribution of calretinin-IR neurons, the inner marginal location of their cell bodies in the inner nuclear layer, and the distinctive bilaminar morphologies of their dendritic arbors in the inner plexiform layer suggested that these calretinin-IR cells were AII amacrine cells. Calretinin immunoreactivity was observed in both A-and B-type horizontal cells. Neurons in the photoreceptor cell layer were not labeled by this antibody. The great majority of tyrosine hydroxylase-IR neurons were located at the innermost border of the inner nuclear layer (conventional amacrines). The processes were monostratified and ran laterally within layer 1 of the inner plexiform layer. Some of the tyrosine hydroxylase-IR neurons were located in the ganglion cell layer (displaced amacrines). The processes of displaced tyrosine hydroxylase-IR amacrine cells were also located within layer 1 of the inner plexiform layer. Some processes of a few neurons were located in the outer plexiform layer. A very low density of neurons had additional bands of tyrosine hydroxylase-IR processes in the middle and deep layers of the inner plexiform layer. The processes of tyrosine hydroxylase-IR neurons extended radially over a wide area and formed large, moderately branched dendritic fields. These processes occasionally had varicosities and formed "dendritic rings". These results indicate that calretinin- and tyrosine hydroxylase-IR neurons represent specific neuronal cell types in the pig retina.  相似文献   

16.
17.
Hyperpolarizing potentials in guinea pig hippocampal CA3 neurons   总被引:2,自引:0,他引:2  
There is a bewildering variety of hyperpolarizing potentials which control activity in hippocampal pyramidal cells. These include an inhibitory postsynaptic potential (IPSP) with early and late components, voltage- and calcium-dependent potassium conductances, a voltage-dependent potassium conductance modulated by muscarinic agents (the M-current), and a complex and poorly understood afterhyperpolarization following epileptiform bursts. In hippocampal CA3 pyramidal cells, mossy fiber stimulation elicits an IPSP which is made up of two readily separable components. Using the in vitro slice preparation, we investigated the underlying ionic basis of these IPSP components and compared them to other hyperpolarizing potentials characteristic of the CA3 neurons. Intracellular recordings were obtained and then tissue was exposed to bathing medium low in chloride concentration or high in potassium concentration; the ion "blockers" EGTA (intracellular); tetraethylammonium (TEA) (intra- and extracellular), and barium and cobalt (extracellular); and the gamma-aminobutyric acid (GABA)/chloride antagonists penicillin, bicuculline and picrotoxin.  相似文献   

18.
19.
Ethanolic phosphotungstic acid (EPTA) has been used to elucidate the structure of certain organelles contained within retinal cells not clearly discernible using conventional preparations. Both synaptic and nonsynaptic components of the guinea pig neural retina have been analyzed. Within the photoreceptor (PR) cell EPTA-stained components include the connecting cilia, their basal bodies, and the root filament system. Cross-striated fibrillar organelles, similar in appearance to the root filaments, are also observed in the nuclear region, the synaptic terminal and other parts of the PR cell. The possible structural continuity and significance of these structures are discussed. Within retinal synapses of both the inner and outer plexiform layers, ribbons and associated paramembranous specializations are stained. The photoreceptor ribbons have a trialaminar structure with filamentous, tufted borders. Synaptic cleft material and postsynaptic densities are also stained. Bipolar cell synapses in the inner plexiform layer contain stained short ribbons as well as closely associated peg-like densities extending towards the presynaptic membrane.  相似文献   

20.
Activity of medial septum-diagonal band cells (MS-DB neurons) was investigated in slices of guinea pig septum. Four types of activity were distinguished on the basis of interspike interval distribution and coefficient of variation (CV): extremely regular (CV<0.3), regular (CV>0.3<0.7), irregular (CV>0.7), and rhythmic bursting patterns. Activity of cells belonging to the first group was resistant to superfusion with a medium low in Ca2+ and high in Mg2+ which produces blockade of synaptic effects. The same applied to a percentage of neurons with a rhythmic bursting pattern. Activity pattern of Mg2+-resistant bursting cells also remained unchanged by the effects of GABA and acetylcholine antagonists. It is concluded that cells with properties of regular and bursting endogenous pacemakers are found in the MS-DB.Institute of Biophysics, Academy of Sciences of the USSR, Pushchino-on-Oka. Translated from Neirofiziologiya, Vol. 19, No. 5, pp. 586–595, September–October, 1987.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号