首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinetic parameters of mouse thymocyte adenylate cyclase activity were determined. NaF and cholera toxin stimulated adenylate cyclase. Stimulation by either agent did not change the pH or Mg2+ optima relative to control (unstimulated cyclase). The Km value for ATP of adenylate cyclase stimulated by NaF was significantly reduced from control. By contrast, cholera toxin treatment did not change the Km relative to control. Adenylate cyclase, when stimulated by NaF, had an optimum for Mn2+ alone, or Mn2+ in combination with Mg2+, at least twice that of control. In contrast, cyclase activity prepared from cells treated with cholera toxin remained unchanged with regard to these divalent cations when compared to control. Addition of NaF to adenylate cyclase prepared from cells treated with cholera toxin resulted in a significant reduction (30%) in activity suggesting that both NaF and cholera toxin were acting on the same cyclase. NaF inhibition of cholera toxin-stimulated activity was shown to be a direct interaction of fluoride on the stimulated cyclase enzyme. This inhibition appeared to be immediate and independent on pH, Mg2+ or ATP concentrations. Although NaF inhibition was lost when Mn2+ was present in the reaction mixture, the activity expressed by addition of NaF to cyclase prepared from cholera toxin-treated cells was much less than by addition of NaF to control. As observed with cholera toxin stimulation alone, activity expressed by the inhibited enzyme (cholera toxin treated + NaF) exhibited a Km for ATP and an optimum for Mn2+ alone or in combination with Mg2+ similar to control.  相似文献   

2.
In Dictyostelium discoideum cells the enzyme adenylate cyclase is functionally coupled to cell surface receptors for cAMP. Coupling is known to involve one or more G-proteins. Receptor-mediated activation of adenylate cyclase is subject to adaptation. In this study we employ an electropermeabilized cell system to investigate regulation of D. discoideum adenylate cyclase. Conditions for selective permeabilization of the plasma membrane have been described by C.D. Schoen, J. C. Arents, T. Bruin, and R. Van Driel (1989, Exp. Cell Res. 181, 51-62). Only small pores are created in the membrane, allowing exchange of exclusively low molecular weight substances like nucleotides, and preventing the loss of macromolecules. Under these conditions functional protein-protein interactions are likely to remain intact. Adenylate cyclase in permeabilized cells was activated by the cAMP receptor agonist 2'-deoxy cAMP and by the nonhydrolyzable GTP-analogue GTP gamma S, which activates G-proteins. The time course of the adenylate cyclase reaction in permeabilized cells was similar to that of intact cells. Maximal adenylate cyclase activity was observed if cAMP receptor agonist or GTP-analogue was added just before cell permeabilization. If these activators were added after permeabilization adenylate cyclase was stimulated in a suboptimal way. The sensitivity of adenylate cyclase activity for receptor occupation was found to decay more rapidly than that for G-protein activation. Importantly, the adenylate cyclase reaction in permeabilized cells was subject to an adaptation-like process that was characterized by a time course similar to adaptation in vivo. In vitro adaptation was not affected by cAMP receptor agonists or by G-protein activation. Evidently electropermeabilized cells constitute an excellent system for investigating the positive and negative regulation of D. discoideum adenylate cyclase.  相似文献   

3.
Studies in bovine and rat brain membranes have suggested that calmodulin can potentiate neurotransmitter- and GTP-stimulated adenylate cyclase activities. To examine whether calmodulin and the stimulatory G-protein, Gs, are potentiative at a calmodulin-sensitive adenylate cyclase, Gs was purified from rabbit liver and reconstituted with a partially purified calmodulin-sensitive adenylate cyclase from bovine brain. Activated Gs (G*s) stimulated basal adenylate cyclase activity and enhanced the stimulation by calmodulin. The potentiation of the calmodulin-stimulated adenylate cyclase activity was dose-dependent with respect to G*s concentration. At the highest concentration of G*s tested (3 nM), a 2-fold enhancement of the calmodulin-stimulated adenylate cyclase activity was observed at all concentrations of calmodulin. The synergistic activation of adenylate cyclase by calmodulin and Gs was dependent on the presence of Ca2+ and occurred at physiologically relevant Ca2+ concentrations. The potentiation was not observed when either a nonactivated Gs or a mixture of activated Gi/Go was used. G*s was not able to stimulate or potentiate a calmodulin-stimulated adenylate cyclase purified from membranes pretreated with the nonhydrolyzable GTP analog, guanyl-5'-yl beta,gamma-imidodiphosphate. Photochemical cross-linking of 125I-calmodulin-diazopyruvamide to proteins having an Mr corresponding to the known Mr of adenylate cyclase was not enhanced by G*s. The results demonstrate that the guanyl nucleotide-dependent enhancement of calmodulin-stimulated adenylate cyclase activity is mediated by G*s and suggest that G*s modulates the enzymatic turnover of the calmodulin-stimulated activity.  相似文献   

4.
A novel adenylate cyclase activity was found in crude homogenates of Neurospora crassa. The adenylate cyclase had substantial activity with ATP-Mg2+ as substrate differing significantly from the strictly ATP-Mn2+-dependent enzyme characterized previously. Additionally, the ATP-Mg2+-dependent activity was stimulated two- to fourfold by GTP or guanyl-5'-yl-imido-diphosphate (Gpp(NH)p). We propose that the ATP-Mg2+-dependent, guanine nucleotide-stimulated activity is due to a labile regulatory component (G component) of the adenylate cyclase which was present in carefully prepared extracts. The adenylate cyclase had a pH optimum of 5.8 and both the catalytic and G component were particulate. The Km for ATP-Mg2+ was 2.2 mM in the presence of 4.5 mM excess Mg2+. Low Mn2+ concentrations had no effect on adenylate cyclase activity whereas high concentrations of Mn2+ or Mg2+ stimulated the enzyme. Maximal Gpp(NH)p stimulation required preincubation of the enzyme in the presence of the guanine nucleotide and the K1/2 for Gpp(NH)p stimulation was 110 nM. Neither fluoride nor any of a variety of glycolytic intermediates or hormones, including glucagon, epinephrine, and dopamine, had an effect on ATP-Mg2+-dependent adenylate cyclase activity. However, the enzymatic activity was stimulated not only by GTP but also by 5'-AMP and was inhibited by NADH.  相似文献   

5.
Adenylate cyclase in permeabilized cells of Saccharomyces cerevisiae was examined. Among various permeabilization procedures, including organic solvents, detergents and other reagents, dimethylsulfoxide (DMSO) and digitonin treatments resulted in the highest recovery of adenylate cyclase activity. Incubation of cells at 30 degrees C with digitonin at 0.01% to 0.1%, or DMSO at 20% to 40% for 15 to 30 min gave optimal adenylate cyclase activity. The enzyme activity in digitonin-permeabilized cells could be supported only by Mn2+, whereas Mg2+ with or without guanine nucleotides did not support cyclase activity. DMSO-permeabilized cells exhibit efficient Mn2+- and Mg2+/Gpp[NH]p-dependent stimulation. Furthermore, digitonin added to yeast membranes at a 1:50 detergent to protein ratio (w/w) abolishes guanyl nucleotide regulation without significantly affecting the Mn2+-supported cyclase activity. The superiority of DMSO is further supported by the fact that recovery of adenylate cyclase activity is better in the DMSO-treated cells than in the digitonin-treated cells. DMSO most probably causes less disturbance of the fabric of the native cell. We conclude that digitonin, but not DMSO, uncouples the catalytic unit of adenylate cyclase from the regulatory GTP binding (ras) proteins.  相似文献   

6.
Treatment of human platelets with concentrations of benzyl alcohol up to 50 mM augmented adenylate cyclase activity when it was assayed in the basal state and when stimulated by prostaglandin E1 (PGE1), isoprenaline or NaF. Benzyl alcohol antagonized the stimulatory effect exerted on the catalytic unit of adenylate cyclase by the diterpene forskolin. Benzyl alcohol did not modify the magnitude of the inhibitory response when the catalytic unit of adenylate cyclase was inhibited by using either low concentrations of guanosine 5'-[beta gamma-imido]triphosphate, which acts selectively on the inhibitory guanine nucleotide-regulatory protein Gi, or during alpha 2-adrenoceptor occupancy, by using adrenaline (+ propranolol). Some 34% of the potent inhibitory action of adrenaline on PGE1-stimulated adenylate cyclase was obliterated in a dose-dependent fashion (concn. giving 50% inhibition = 12.5 mM) by benzyl alcohol, with the residual inhibitory action being apparently resistant to the action of benzyl alcohol at concentrations up to 50 mM. Treatment of membranes with benzyl alcohol did not lead to the release of either the alpha-subunit of Gi or G-protein subunits. The alpha 2-adrenoceptor-mediated inhibition of adenylate cyclase was abolished when assays were performed in the presence of Mn2+ rather than Mg2+ and, under such conditions, dose-effect curves for the action of benzyl alcohol on PGE1-stimulated adenylate cyclase activity were similar whether or not adrenaline (+propranolol) was present. We suggest that (i) alpha 2-adrenoceptor- and Gi-mediated inhibition of PGE1-stimulated adenylate cyclase may have two components, one of which is sensitive to inhibition by benzyl alcohol, and (ii) the Gi-mediated inhibition of forskolin-stimulated adenylate cyclase exhibits predominantly the benzyl alcohol-insensitive component.  相似文献   

7.
GMP-PNP, a non-hydrolyzable analog of GTP binds tightly to G-protein in the presence of Mg2+, so that the binding is stable even after exhaustive washings. This property was exploited to prepare membrane samples of rat brain where G-protein GTP-binding sites were saturated with GMP-PNP. Experiments carried out with these membranes showed that GTP, GMP-PNP, GDP-S and GMP (1 mM) inhibit the sodium-independent [3H]glutamate binding by 30–40% [F(4,40) = 5.9; p < .001], whereas only GMP-PNP activates adenylate cyclase activity [F(6,42) = 3.56; p < .01]. The inhibition of sodium-independent [3H]glutamate binding occurred in the absence of Mg2+. These findings suggest that guanine nucleotides may inhibit glutamate binding and activate adenylate cyclase through distinct mechanisms by acting on different sites.  相似文献   

8.
In isolated perfused rat hearts, epidermal growth factor (EGF; 15 nM) increased cellular cyclic AMP (cAMP) content by 9.5-fold. In rat cardiac membranes, EGF also stimulated adenylate cyclase activity in a dose-dependent manner, with maximal stimulation (35% above control) being observed at 10 nM-EGF. Half-maximal stimulation of adenylate cyclase was observed at 40 pM-EGF. Although the beta-adrenergic-receptor antagonist propranolol markedly attenuated the isoprenaline-mediated increase in cAMP content of perfused hearts and stimulation of adenylate cyclase activity, it did not alter the ability of EGF to elevate tissue cAMP content and stimulate adenylate cyclase. The involvement of a guanine-nucleotide-binding protein (G-protein) in the activation of adenylate cyclase by EGF was indicated by the following evidence. First, the EGF-mediated stimulation of adenylate cyclase required the presence of the non-hydrolysable GTP analogue, guanyl-5'-yl-imidodiphosphate (p[NH]ppG). Maximal stimulation was observed in the presence of 10 microM-p[NH]ppG. Secondly, in the presence of 10 microM-p[NH]ppG, the stable GDP analogue guanosine 5'-[beta-thio]diphosphate at a concentration of 10 microM blocked the stimulation of the adenylate cyclase by 1 nM- and 10 nM-EGF. Third, NaF + AlCl3-stimulated adenylate cyclase activity was not altered by EGF. The ability of EGF to stimulate adenylate cyclase was not affected by pertussis-toxin treatment of cardiac membranes. However, in cholera-toxin-treated cardiac membranes, when the adenylate cyclase activity was stimulated by 2-fold, EGF was ineffective. Finally, PMA by itself did not alter the activity of cardiac adenylate cyclase, but abolished the EGF-mediated stimulation of this enzyme activity. The experimental evidence in the present paper demonstrates, for the first time, that EGF stimulates adenylate cyclase in rat cardiac membranes through a stimulatory GTP-binding regulatory protein, and this effect is manifested in elevated cellular cAMP levels in perfused hearts exposed to EGF.  相似文献   

9.
Adenylate cyclase activity and levels of guanine nucleotide regulatory proteins (G-proteins) were compared in platelets from normal and non-insulin-dependent diabetic (NIDDM) male subjects. Whilst no differences were noted in basal and NaF-stimulated adenylate cyclase activities the degree of stimulation achieved by both forskolin and prostaglandin, E1 was lower by some 34 and 52% respectively, in platelet membranes from diabetic subjects compared with those from normal control subjects. Altered alpha 1-adrenoceptor-mediated inhibition of prostaglandin E1-stimulated adenylate cyclase activity was evident; it being some 34% lower in platelet membranes from diabetic subjects compared to controls. Analysis of G-protein alpha-subunits, using specific anti-peptide antisera, showed that platelets from all subjects exhibited the Gi-2 and Gi-3, but not the Gi-1 forms of the inhibitory G-protein 'Gi' and all expressed the 42 kDa species of alpha-subunit of the stimulatory G-protein Gs. Whilst platelets of diabetic subjects had levels of Gs which were comparable to those found in control subjects their levels of Gi-2 and Gi-3 were some 49 and 75%, respectively, of those found in platelets from control subjects. It is suggested that changes in adenylate cyclase functioning and G-protein expression may contribute to altered platelet functioning in non-insulin-dependent diabetic subjects.  相似文献   

10.
Mouse neuroblastoma x rat glioma hybrid cells (NG108-15) express an opioid receptor of the delta subclass which both stimulates high-affinity GTPase activity and inhibits adenylate cyclase by interacting with a pertussis-toxin-sensitive guanine-nucleotide-binding protein(s) (G-protein). Four such G-proteins have now been identified without photoreceptor-containing tissues. We have generated anti-peptide antisera against synthetic peptides which correspond to the C-terminal decapeptides of the alpha-subunit of each of these G-proteins and also to the stimulatory G-protein of the adenylate cyclase cascade (Gs). Using these antisera, we demonstrate the expression of three pertussis-toxin-sensitive G-proteins in these cells, which correspond to the products of the Gi2, Gi3 and Go genes, as well as Gs. Gi1, however, is not expressed in detectable amounts. IgG fractions from each of these antisera and from normal rabbit serum were used to attempt to interfere with the interaction of the opioid receptor with the G-protein system by assessing ligand stimulation of high-affinity GTPase activity, inhibition of adenylate cyclase activity and conversion of the receptor to a state which displays reduced affinity for agonists. The IgG fraction from the antiserum (AS7) which specifically identifies Gi2 in these cells attenuated the effects of the opioid receptor. This effect was complete and was not mimicked by any of the other antisera. We conclude that the delta-opioid receptor of these cells interacts directly and specifically with Gi2 to cause inhibition of adenylate cyclase, and that Gi2 represents the true Gi of the adenylate cyclase cascade. The ability to measure alterations in agonist affinity for receptors following the use of specific antisera against a range of G-proteins implies that such techniques should be applicable to investigations of the molecular identity of the G-protein(s) which interacts with any receptor.  相似文献   

11.
We have used the method of heavy isotope labeling to study the metabolic turnover of adenylate cyclase in a nonfusing muscle cell line, the BC3H1 cells. These cells contains an adenylate cyclase coupled to beta-adrenergic receptors and highly stimulated by forskolin, a potent activator of the enzyme. After transfer of the cells from normal medium to heavy medium (a medium containing heavy labeled amino acids, 2H, 13C, 15N), heavy isotope-labeled adenylate cyclase molecules progressively replace pre-existing light molecules. In sucrose gradient differential sedimentation, after a 5-day switch in heavy medium, the enzyme exhibited a higher mass (s = 8.40 +/- 0.03 S, n = 13) compared to the control enzyme (s = 7.40 +/- 0.04 S, n = 36). Indeed, the increase in the sedimentation coefficient of the heavy molecules was due to the synthesis of new molecules of adenylate cyclase labeled with heavy isotope amino acids since in the presence of cycloheximide, an inhibitor of protein synthesis, no change in the sedimentation pattern of the forskolin-stimulated adenylate cyclase occurred. After incorporation of heavy isotope amino acids in the adenylate cyclase molecules, the kinetics parameters of the enzyme (i.e. Km for ATP and EC50 for Mn2+ or Mg2+) did not change. However, adenylate cyclase from cells incubated with heavy medium exhibits an activity about 2-fold lower than control (cells in light medium). After switching the cells to the heavy medium, the decrease of the activity of the enzyme occurred during the first 24 h and thereafter remained at a steady state for at least 4 days. In contrast, 24 h after the switch, the sedimentation coefficient of forskolin-stimulated adenylate cyclase was progressively shifted to a higher value indicating that the heavy isotope-labeled enzyme replaced the pre-existing light form of the molecule. These observations show that the rapid decrease in adenylate cyclase activity and the synthesis of heavy adenylate cyclase molecules are two separate events. The relative amounts of heavy and light components of forskolin-stimulated adenylate cyclase obtained in sucrose gradient differential sedimentation were determined as a function of time beginning 24 h after the transfer into the heavy medium. The decrease of the pre-existing light form could be represented by simple first order kinetics with a half-time of 40 h. This result suggests that the metabolic renewal of forskolin-stimulated adenylate cyclase is comparable to that of most plasma membrane proteins.  相似文献   

12.
Exposure of neuroblastoma x glioma hybrid (NG108-15) cells to low concentrations of cholera toxin produced a stimulation of both basal and forskolin-amplified adenylate cyclase activity in membranes prepared from these cells. Higher concentrations of cholera-toxin reversed this effect. Mn2+ activation of adenylate cyclase indicated that this effect was not due to a modification of the intrinsic activity of this enzyme. Cholera toxin was demonstrated to produce a concentration and time-dependent loss of GS alpha from membranes of these cells. Loss of GS alpha from membranes of these cells was preceded by its ADP-ribosylation. The effects of cholera toxin were specific for GS alpha, as no alterations in levels of the pertussis toxin-sensitive G-proteins Gi2, Gi3 and Go, were noted in parallel. Equally, no alteration in levels of G-protein beta-subunit were produced by the cholera toxin treatment. These experiments demonstrate that cholera toxin-catalysed ADP-ribosylation does not simply maintain an activated population of GS at the plasma membrane and that alterations in levels of GS at the plasma membrane can modify adenylate cyclase activity.  相似文献   

13.
The mechanisms by which forskolin stimulates adenylate cyclase activity in turkey erythrocyte membranes and is influenced by manganese and Gpp(NH)p were studied. Forskolin-dependent adenylate cyclase activity in particulate turkey erythrocyte membranes is enhanced following preincubation of membranes with isoproterenol and GMP (cleared membranes). In contrast, solubilization of turkey erythrocyte membranes, previously cleared, renders them relatively refractory to forskolin but not to Gpp(NH)p. Whereas adenylate cyclase activity due to the simultaneous presence of forskolin and Mn2+ in particulate turkey erythrocyte membranes is additive, their copresence becomes synergistic after solubilization. The apparent Kact for forskolin activation of adenylate cyclase is not influenced by clearance or by the presence of Mn2+ in particulate turkey erythrocyte membranes. Following solubilization, the Vmax for forskolin-dependent adenylate cyclase activation determined in the presence of Mn2+ is also independent of clearance. Forskolin activation of turkey erythrocyte adenylate cyclase appears to be influenced at sites in addition to the catalytic unit.  相似文献   

14.
The mechanism of calmodulin dependent regulation of adenylate cyclase has been studied in human platelet membranes. Calmodulin activated adenylate cyclase exhibited a biphasic response to both Mg2+ and Ca2+. A stimulatory effect of Mg2 on adenylate cyclase was observed at all Mg2+ concentrations employed, although the degree of activation by calmodulin was progressively decreased with increasing concentrations of Mg2+. These results demonstrate that the Vmax of calmodulin dependent platelet adenylate cyclase can be manipulated by varying the relative concentrations of Mg2+ and Ca2+. The activity of calmodulin stimulated adenylate cyclase was always increased 2-fold above respective levels of activity induced by GTP, Gpp(NH)p and/or PGE. The stimulatory influence of calmodulin was not additive but synergistic to the effects of PGE1, GTP and Gpp(NH)p. GDP beta S inhibited GTP-and Gpp(NH)p stimulation of adenylate cyclase but was without effect on calmodulin stimulation. Since the inhibitory effects of GDP beta S have been ascribed to apparent reduction of active N-protein-catalytic unit (C) complex formation, these results suggest that the magnitude of calmodulin dependent adenylate cyclase activity is proportional to the number of N-protein-C complexes, and that calmodulin interacts with preformed N-protein-C complex to increase its catalytic turnover. Our data do not support existence of two isoenzymes of adenylate cyclase (calmodulin sensitive and calmodulin insensitive) in human platelets.  相似文献   

15.
Nuclei from purified human peripheral lymphocytes were prepared by incubations with Triton X-100 to disrupt the cells, followed by sucrose-density gradient centrifugation. The nuclei were pure as judged by phase-contrast microscopy and had low contents of non-nuclear marker enzymes. In addition, nuclei prepared from lymphocytes surface-labelled with 125I had only 2-7% of the radioactivity bound to intact lymphocytes. At 3.3 mM-Ca2+ and 100 micronM-ATP a fluoride-sensitive adenylate cyclase was demonstrated in nuclei prepared in 0.2% Triton X-100 or 0.33% Triton X-100. There was linear accumulation of cyclic AMP for 10 min in both preparations. The apparent Km for ATP was 90 micronM. Adenylate cyclase activity was augmented by 1.0 mM-Mn2+ and inhibited at higher concentrations. Ca2+ showed two peaks of stimulation, at 1.0-2.5 mM- and above 10 mM-Ca2+. Mg2+ was inhibitory at all concentrations. EDTA OR EGTA only slightly decreased adenylate cyclase activity, suggesting that another metal ion may be necessary for activity. Adenylate cyclase activity was stimulated by 10mM-isoproterenol and 10 micronM-adrenaline in the presence of a phosphodiesterase inhibitor. Phytohaemagglutinin and prostaglandin E1 alone or in combination with isoproterenol had no effect on nuclear adenylate cyclase activity in either nuclei preparation. These results indicate that human lymphocyte nuclei contain one or several adenylate cyclases which differ from adenylate cyclases found in other subcellular fractions of these cells with regard to their bivalentcation requirements and responsiveness to pharmacological agents.  相似文献   

16.
The properties of the adenylate cyclase from forskolin-resistant mutants of Y1 adrenocortical tumor cells was compared with the properties of the enzyme from parental Y1 cells in order to localize the site of mutation. In parental Y1 cells, forskolin stimulated adenylate cyclase activity with kinetics suggestive of an interaction at two sites; in mutant cells, forskolin resistance was characterized by a decrease in enzymatic activity at both sites. Forskolin potentiated the enzyme's responses to NaF and guanyl-5'-yl imidodiphosphate (Gpp(NH)p) in parent and mutant clones, and the mutant enzyme showed the same requirements for Mg2+ and Mn2+ as did the parent enzyme. The adenylate cyclase associated with forskolin-resistant mutants was insensitive to ACTH and was less responsive to Gpp(NH)p than was the parent enzyme. In parental Y1 cells and in the forskolin-resistant mutants, cholera toxin catalyzed the transfer of [32P]ADP-ribose from [32P]NAD+ into three membrane proteins associated with the alpha subunit of Gs; however, the amount of labeled ADP-ribose incorporated into mutant membranes was reduced by as much as 70%. Both parent and mutant membranes were labeled by pertussis toxin to the same extent. The insensitivity of the mutant adenylate cyclase to ACTH and Gpp(NH)p and the selective resistance of the mutant membranes to cholera toxin-catalyzed ADP-ribosylation suggest that a specific defect associated with Gs is involved in the mutation to forskolin resistance in Y1 cells.  相似文献   

17.
The effect of calcium (Ca2+) on the adenylate cyclase activity and calmodulin level of cerebral cortex was determined in pentobarbital dependent rats and age matched controls. Female Sprague-Dawley rats were made dependent and maintained on pentobarbital by eating a mixture of pentobarbital and rat chow (350 mg pentobarbital/30 g chow). Ca2+ activated then inhibited the adenylate cyclase activity associated with a 20,000 X g particulate fraction from pentobarbital dependent and age matched control rats. The values for one-half maximal stimulation and inhibition by Ca2+ did not differ significantly in either cortical preparation. However, the ability of Ca2+ to activate adenylate cyclase from pentobarbital dependent animals was significantly decreased (p less than 0.05) when compared to control animals. Pentobarbital (10(-4) - 10(-3) added to particulate fractions from naive control rats did not alter the ability of Ca2+ to activate adenylate cyclase. The calmodulin levels in the particulate fraction from pentobarbital dependent animals (30.2 +/- 6.7 ng calmodulin/mg protein) did not differ significantly when compared to control (33.0 +/- 4.7 ng/mg). By contrast, the calmodulin levels (37.9 +/- 5.9 ng/mg) in the 20,000 X g supernatant from cortex of pentobarbital dependent animals was significantly greater than the level in the supernatant from control animals (28.6 +/- 2.6 ng/mg). The ability of forskolin, dopamine, GTP or forskolin plus GTP (all at a concentration of 100 microM) to activate adenylate cyclase was significantly decreased in particulate preparations from pentobarbital dependent animals. In summary, our data show that alterations in calmodulin levels and a decreased responsivity of adenylate cyclase occur in animals physically dependent on pentobarbital.  相似文献   

18.
1. Properties of the membrane-bound form adenylate cyclase in Asterias amuensis oocytes have been investigated.2. Mn2+ activated enzyme activity of starfish oocytes.3. Starfish eyclase is activated by guanine nucleotides, fluoride, forskolin and cholera toxin, thus demonstrating the presence of regulatory subunity (G-protein).4. It was suggested that the starfish membrane oocytes have receptor-like structures which are sensitive to dopamine and ones related with adenylate cyclase.  相似文献   

19.
LLC-PK1L cells, a kidney-derived cell line, had sustained growth in a defined medium. When compared to the parent cell line growing with 10% fetal bovine serum, LLC-PK1L cells had about 100-times fewer vasopressin receptors. Upon modifications of the cell culture medium, the vasopressin response of the adenylate cyclase could be increased by more than 10-fold with a parallel increase in vasopressin receptor number. Using cells with high or low receptor densities, the stimulatory and inhibitory effects of N6-L-2-phenylisopropyl-adenosine on the modulation of the adenylate cyclase responsiveness to vasopressin were investigated. When high concentrations of GTP were added, low concentrations of phenylisopropyladenosine inhibited the enzyme, while higher concentrations were found to be stimulatory. The adenylate cyclase activity stimulated by vasopressin could only be inhibited by phenylisopropyladenosine under these conditions in membranes with high receptor density; only the increase in enzyme activity due to high GTP concentration was inhibitable. The analysis of the dependency of the adenylate cyclase activity as a function of the vasopressin concentration showed that, besides reducing the maximum velocity of the system for vasopressin, the addition of phenylisopropyladenosine generated an heterogeneity in the adenylate cyclase response to vasopressin (as judged by a curvilinear Eadie plot). A high-affinity component in the adenylate cyclase response appeared when phenylisopropyladenosine was added. The growth of the cells in a medium containing adenosine deaminase gave results identical to those obtained for control cells. However, growing the cells with both phenylisopropyladenosine and adenosine deaminase abolished the inhibitory effects of the former on the adenylate cyclase and greatly reduced its stimulatory action. Under these conditions, the vasopressin response of the adenylate cyclase was not further regulated by phenylisopropyladenosine. These results indicate a role of adenosine on vasopressin response, especially at low physiological concentrations of the hormone where a high-affinity component of the hormonal response could be demonstrated.  相似文献   

20.
Desensitization of catecholamine stimulated adenylate cyclase (AC) activity is demonstrated in membranes derived from turkey erythrocytes pre-treated with isoproterenol. Membranes from desensitized cells had a loss in maximal catecholamine stimulated adenylate cyclase activity of 104 +/- 13 (pmols/mg protein/10', p less than .001) compared with controls. When adenylate cyclase was maximally stimulated with NaF or Gpp(NH)p, the decrements were 84 +/- 19 (p less than .005) and 92 +/- 32 (p less than .05) pmol/mg protein/10' respectively. There was no change in beta-adrenergic receptor number in membranes derived from treated cells. While the molecular mechanism accounting for the desensitization is uncertain, the data is consistent with the hypothesis that there is a lesion distal to the beta-adrenergic receptor, possibly involving the nucleotide site or the catalytic subunit of adenylate cyclase, causing the desensitization in the isoproterenol treated cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号