首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Y1转座酶关联转座子(Y1ATs)的活性催化位点为一个酪氨酸,能够切割和连接单链DNA,在原核生物分布广泛。为探究Y1转座酶关联转座子在大肠杆菌(Escherichia coli, E. coli)与沙门氏菌(Salmonella enterica, S. ente)基因组中系统进化特性,通过Hmmsearch程序对Y1转座酶关联转座子进行了挖掘分析。结果表明,Y1转座酶关联转座子广泛分布于96.84%大肠杆菌基因组和80.4%沙门氏菌基因组。根据序列比对和蛋白结构域预测将Y1转座酶关联转座子分为10类,均隶属于IS200/IS605超家族,其中11 645个属于IS200家族,4 811个属于IS605家族。IS200家族广泛分布于S. ente基因组中(72.24%),而IS605家族广泛分布于E. coli基因组中(89.38%)。IS200拷贝数以及完整拷贝数显著高于IS605。IS200家族仅含有一个Y1转座酶编码区,而IS605家族含两个开放阅读框,分别编码Y1转座酶和TnpB蛋白。IS200家族的Y1氨基酸序列高度保守(95.3%),而IS605家族的Y1和TnpB具有较高遗传多样性,为研究转座子在原核生物的遗传进化模式提供重要参考。IS200家族具有高度保守的Y1转座酶,且完整拷贝数比例较高,提示该类转座子可能具有转座活性,对其活性的挖掘有利于研制转座子介导的新型高效基因编辑工具。  相似文献   

2.
3.
Belonging to Class II of transposable elements, En/Spm transposons are widespread in a variety of distantly related plant species. Here, we report on the sequence conservation of the transposase region from sequence analyses of En/Spm-like transposons from Poaceae species, namely Zingeria biebersteiniana, Zingeria trichopoda, Triticum monococcum, Triticum urartu, Hordeum spontaneum, and Aegilops speltoides. The transposase region of En/Spm-like transposons was cloned, sequenced, and compared with equivalent regions of Oryza and Arabidopsis from the gene bank database. Southern blot analysis indicated that the En/Spm transposon was present in low (Hordeum spontaneum, Triticum monococcum, Triticum urartu) through medium (Zingeria bieberstiana, Zingeria trichopoda) to relatively high (Aegilops speltoides) copy numbers in Poaceae species. A cytogenetic analysis of the chromosomal distribution of En/Spm transposons revealed the concurence of the chromosomal localization of the En/Spm clusters with mobile clusters of rDNA. An analysis of En/Spm-like transposase amino acid sequences was carried out to investigate sequence divergence between 5 genera--Triticum, Aegilops, Zingeria, Oryza and Arabidopsis. A distance matrix was generated; apparently, En/Spm-like transposase sequences shared the highest sequence homology intra-generically and, as expected, these sequences were significantly diverged from those of O. sativa and A. thaliana. A sequence comparison of En/Spm-like transposase coding regions defined that the intra-genomic complex of En/Spm-like transposons could be viewed as relatively independent, vertically transmitted, and permanently active systems inside higher plant genomes. The sequence data from this article was deposited in the EMBL/GenBank Data Libraries under the accession nos. AY707995-AY707996-AY707997-AY707998-AY707999-AY708000-AY708001-AY708002-AY708003-AY708004-AY708005-AY708005-AY265312.  相似文献   

4.
The CRS1-YhbY domain (also called the CRM domain) is represented as a stand-alone protein in Archaea and Bacteria, and in a family of single- and multidomain proteins in plants. The function of this domain is unknown, but structural data and the presence of the domain in several proteins known to interact with RNA have led to the proposal that it binds RNA. Here we describe a phylogenetic analysis of the domain, its incorporation into diverse proteins in plants, and biochemical properties of a prokaryotic and eukaryotic representative of the domain family. We show that a bacterial member of the family, Escherichia coli YhbY, is associated with pre-50S ribosomal subunits, suggesting that YhbY functions in ribosome assembly. GFP fused to a single-domain CRM protein from maize localizes to the nucleolus, suggesting that an analogous activity may have been retained in plants. We show further that an isolated maize CRM domain has RNA binding activity in vitro, and that a small motif shared with KH RNA binding domains, a conserved "GxxG" loop, contributes to its RNA binding activity. These and other results suggest that the CRM domain evolved in the context of ribosome function prior to the divergence of Archaea and Bacteria, that this function has been maintained in extant prokaryotes, and that the domain was recruited to serve as an RNA binding module during the evolution of plant genomes.  相似文献   

5.
The V(D)J recombination reaction in jawed vertebrates is catalyzed by the RAG1 and RAG2 proteins, which are believed to have emerged approximately 500 million years ago from transposon-encoded proteins. Yet no transposase sequence similar to RAG1 or RAG2 has been found. Here we show that the approximately 600-amino acid “core” region of RAG1 required for its catalytic activity is significantly similar to the transposase encoded by DNA transposons that belong to the Transib superfamily. This superfamily was discovered recently based on computational analysis of the fruit fly and African malaria mosquito genomes. Transib transposons also are present in the genomes of sea urchin, yellow fever mosquito, silkworm, dog hookworm, hydra, and soybean rust. We demonstrate that recombination signal sequences (RSSs) were derived from terminal inverted repeats of an ancient Transib transposon. Furthermore, the critical DDE catalytic triad of RAG1 is shared with the Transib transposase as part of conserved motifs. We also studied several divergent proteins encoded by the sea urchin and lancelet genomes that are 25%−30% identical to the RAG1 N-terminal domain and the RAG1 core. Our results provide the first direct evidence linking RAG1 and RSSs to a specific superfamily of DNA transposons and indicate that the V(D)J machinery evolved from transposons. We propose that only the RAG1 core was derived from the Transib transposase, whereas the N-terminal domain was assembled from separate proteins of unknown function that may still be active in sea urchin, lancelet, hydra, and starlet sea anemone. We also suggest that the RAG2 protein was not encoded by ancient Transib transposons but emerged in jawed vertebrates as a counterpart of RAG1 necessary for the V(D)J recombination reaction.  相似文献   

6.
Protein-dependent group II intron splicing provides a forum for exploring the roles of proteins in facilitating RNA-catalyzed reactions. The maize nuclear gene crs1 is required for the splicing of the group II intron in the chloroplast atpF gene. Here we report the molecular cloning of the crs1 gene and an initial biochemical characterization of its gene product. Several observations support the notion that CRS1 is a bona fide group II intron splicing factor. First, CRS1 is found in a ribonucleoprotein complex in the chloroplast, and cofractionation data provide evidence that this complex includes atpF intron RNA. Second, CRS1 is highly basic and includes a repeated domain with features suggestive of a novel RNA-binding domain. This domain is related to a conserved free-standing open reading frame of unknown function found in both the eubacteria and archaea. crs1 is the founding member of a gene family in plants that was derived by duplication and divergence of this primitive gene. In addition to its previously established role in atpF intron splicing, new genetic data implicate crs1 in chloroplast translation. The chloroplast splicing and translation functions of crs1 may be mediated by the distinct protein products of two crs1 mRNA forms that result from alternative splicing of the crs1 pre-mRNA.  相似文献   

7.
In vivo gene transfer systems and transposons   总被引:16,自引:0,他引:16  
  相似文献   

8.
Lin J  Chen ZZ  Tian B  Hua YJ 《Gene》2007,387(1-2):15-20
RecX is a regulator of RecA activity by interacting with RecA protein or RecA filaments. Genes encoding RecX were found in genomes of a wide diversity of bacteria and some plants (e.g., Arabidopsis thaliana and Oryza sativa). Our comparative genome analysis showed that although members of the RecX family are found in many bacterial species, they are not found in archaea and the only gene found in eukaryotes is likely derived from bacteria genomes. It is therefore proposed that RecX is of bacterial origin, and the gene had presented in the common ancestor of bacteria. Moreover, bacterial RecX and plant RecX domain are homologues, and RecX domain in plants may have derived from bacteria via unknown pathways. Plant RecX-like protein was formed by a gene fusion event between a unique N-terminal domain of unknown origin and RecX domain within plant cells. Finally, three possible evolutionary pathways from bacteria to plant were discussed.  相似文献   

9.
10.
Conjugative transposons are integrated DNA elements that excise themselves to form a covalently closed circular intermediate. This circular intermediate can either reintegrate in the same cell (intracellular transposition) or transfer by conjugation to a recipient and integrate into the recipient's genome (intercellular transposition). Conjugative transposons were first found in gram-positive cocci but are now known to be present in a variety of gram-positive and gram-negative bacteria also. Conjugative transposons have a surprisingly broad host range, and they probably contribute as much as plasmids to the spread of antibiotic resistance genes in some genera of disease-causing bacteria. Resistance genes need not be carried on the conjugative transposon to be transferred. Many conjugative transposons can mobilize coresident plasmids, and the Bacteroides conjugative transposons can even excise and mobilize unlinked integrated elements. The Bacteroides conjugative transposons are also unusual in that their transfer activities are regulated by tetracycline via a complex regulatory network.  相似文献   

11.
J C Vos  R H Plasterk 《The EMBO journal》1994,13(24):6125-6132
The Tc1 transposon of Caenorhabditis elegans is a member of the Tc1/mariner family of mobile elements. These elements have inverted terminal repeats that flank a single transposase gene. Here we show that Tc1 transposase, Tc1A, has a bipartite DNA binding domain related to the paired domain of mammalian and Drosophila genes. Both the DNA binding domain of Tc1A and the DNA binding site in the inverted repeat of Tc1 can be divided into two subdomains. Methylation interference studies demonstrate adjacent minor and major groove contacts at the inner part of the binding site by the N-terminal 68 amino acids of the DNA binding domain. In addition, Tc1A amino acids 69-142 are essential for major groove contacts at the outer part of the binding site. Recombinant Tc1A is found to be able to introduce a single strand nick at the 5' end of the transposon in vitro. Furthermore, Tc1A can mediate a phosphoryl transfer reaction. A mutation in a DDE motif abolishes both endonucleolytic and phosphoryl transfer activities, suggesting that Tc1A carries a catalytic core common to retroviral integrases and IS transposases.  相似文献   

12.
Two transposons, Tn4351 and Tn4400, which were originally isolated from the obligate anaerobe Bacteroides fragilis, carry a tetracycline resistance (Tcr) gene that confers resistance only on aerobically grown Escherichia coli. This aerobic Tcr gene, designated tetX, has been shown previously to act by chemically modifying tetracycline in a reaction that appears to require oxygen. We have now obtained the DNA sequence of tetX and 0.6 kb of its upstream region from Tn4400. Analysis of the DNA sequence of tetX revealed that this gene encoded a 43.7-kDa protein. The deduced amino acid sequence of the amino terminus of the protein had homology with a number of enzymes, all of which had in common a requirement for NAD(P). In an earlier study, we had observed that disrupted cells, unlike intact cells, could not carry out the alteration of tetracycline. We have now shown that if NADPH (1 mM) is added to the disrupted cell preparation, alteration of tetracycline occurs. Thus, TetX appears to be an NADP-requiring oxidoreductase. Tn4400 conferred a fivefold-lower level of tetracycline resistance than Tn4351. This finding appears to be due to a lower level of expression of the tetX on Tn4400, because the activity of a tetX-lacZ fusion from Tn4400 was 10-fold lower than that of the same fusion from Tn4351. A comparison of the sequence of the tetX region on Tn4351 with that on Tn4400 showed that the only difference between the upstream regions of the two transposons was a 4-base change 350 bp upstream of the start of the tetX coding region. The 4-base change difference creates a good consensus -35 region on Tn4351 that is not present on Tn4400 and could be creating an extra promoter.  相似文献   

13.
M Tanaka  T Yamamoto    T Sawai 《Journal of bacteriology》1983,153(3):1432-1438
The molecular interrelationship of a transposon family which confers multiple antibiotic resistance and is assumed to have been generated from an ancestral mercury transposon was analyzed. Initially, the transposons Tn2613 (7.2 kilobases), encoding mercury resistance, and Tn2608 (13.5 kilobases), encoding mercury, streptomycin, and sulfonamide resistances, were isolated and their structures were analyzed. Next, the following transposons were compared with respect to their genetic and physical maps: Tn2613 and Tn501, encoding mercury resistance; Tn2608 and Tn21, encoding mercury, streptomycin, and sulfonamide resistance; Tn2607 and Tn4, encoding streptomycin, sulfonamide, and ampicillin resistance; and Tn2603, encoding mercury, streptomycin, sulfonamide, and ampicillin resistance. The results suggest that the transposons encoding multiple resistance were evolved from an ancestral mercury transposon.  相似文献   

14.
《Gene》1997,194(1):57-62
A novel family of genes expressed in human brain has recently been identified. Gene 239FB, transcribed extensively in fetal brain, was isolated from the chromosome 11p13 region associated with mental retardation component of the WAGR (Wilms tumor, aniridia, genitourinary anomalies, mental retardation) syndrome. This report presents a cDNA sequence and expression profile of a related gene, 239AB, isolated from adult brain library, that was mapped to chromosome 22. While similar in structure, the two genes differ in their expression pattern and may have different roles in central nervous system development and function. In contrast to the 239FB, which is expressed predominantly in fetal brain, the 239AB gene is transcribed in adult tissues. Both human genes encode novel proteins of unknown function that are highly conserved from Caenorhabditis elegans to birds and mammals. Phylogenetic analysis suggested that the two lineages of the ancient gene family represented by 239FB and 239AB have been in existence prior to the emergence of modern animals.  相似文献   

15.
The aminoacyl tRNA synthetases arose early in evolution to establish the genetic code during translation. Long thought of as cytoplasmic enzymes with a single defined function, new studies have demonstrated their roles in nuclear and extracellular signaling pathways, where they regulate angiogenesis, inflammation, mTor signaling, tumorigenesis, and more. These novel functions are typically associated with novel domains added to higher eukaryote tRNA synthetases, and specific resected forms that are generated by alternative splicing and natural proteolysis. The tRNA synthetases are now seen as central “nodes” that use their novel domains to connect with multiple-cell signaling pathways through a variety of interacting partners. These partners include nuclear proteins, extracellular receptors, cytoplasmic proteins, and cellular RNAs. This new biology from tRNA synthetases is an endless frontier.  相似文献   

16.
Microbial communities from the surface of ancient seeds of higher plants and embedding frozen material dated to the late Pleistocene (formed about 30 thousand years ago) were studied by various methods: scanning electron microscopy, epifluorescence microscopy, and inoculation of nutrient media, followed by identification of isolated cultures. Both prokaryotic and eukaryotic microorganisms were found on the surface of ancient seeds. The total quantity of bacterial cells determined by direct counting and dilution plating (CFU) for the samples of ancient seeds exceeded the value in the embedding frozen material by one to two orders of magnitude. This pattern was not maintained for mycelial fungi; their quantity in the embedding material was also rather high. A significant difference was revealed between the microbial communities of ancient seeds and embedding frozen material. These findings suggest that ancient plant seeds are a particular ecological niche for microorganisms existing in permafrost and require individual detailed study.  相似文献   

17.
18.
19.
A Day  J D Rochaix 《Gene》1991,104(2):235-239
TOC1 transposons from Chlamydomonas reinhardtii have an unusual arrangement of long terminal repeats. Polymorphic regions between TOC1 transposons were identified by restriction mapping on Southern blots. The variation in size of an internal MluI fragment defines two subclasses of TOC1 elements. Full-length cloned members of each subclass of TOC1 element were compared by electron microscope heteroduplex analysis. The cloned elements were co-linear over their entire length with no large sequence discontinuities. Base substitutions and small insertion/deletion events of less than 50 bp are responsible for forming the two subclasses of TOC1 elements.  相似文献   

20.
Transposases encoded by various transposable DNA elements and retroviral integrases belong to a family of proteins with three conserved acidic amino acids, D, D, and E, constituting the D-D-E motif that represents the active center of the proteins. IS1, one of the smallest transposable elements in bacteria, encodes a transposase which has been thought not to belong to the family of proteins with the D-D-E motif. In this study, we found several IS1 family elements that were widely distributed not only in eubacteria but also in archaebacteria. The alignment of the transposase amino acid sequences from these IS1 family elements showed that out of 14 acidic amino acids present in IS1 transposase, three (D, D, and E) were conserved in corresponding positions in the transposases encoded by all the elements. Comparison of the IS1 transposase with other proteins with the D-D-E motif revealed that the polypeptide segments surrounding each of the three acidic amino acids were similar. Furthermore, the deduced secondary structures of the transposases encoded by IS1 family elements were similar to one another and to those of proteins with the D-D-E motif. These results strongly suggest that IS1 transposase has the D-D-E motif and thus belongs to the family of proteins with the D-D-E motif. In fact, mutant IS1 transposases with an amino acid substitution for each of the three acidic amino acids possibly constituting the D-D-E motif were not able to promote transposition of IS1, supporting this hypothesis. The D-D-E motif identified in IS1 transposase differs from those in the other proteins in that the polypeptide segment between the second D and third E in IS1 transposase is the shortest, 24 amino acids in length. Because of this difference, the presence of the D-D-E motif in IS1 transposase has not been discovered for some time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号