首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The giant protein titin has important roles in muscle sarcomere integrity, elasticity and contractile activity. The key role in elasticity was highlighted in recent years by single-molecule mechanical studies, which showed a direct relationship between the non-uniform structure of titin and the hierarchical mechanism of its force-extension behavior. Further advances in understanding mechanisms controlling sarcomere structure and elasticity require detailed knowledge of titin arrangement and interactions in situ. Here we present data on the structure and self-interactive properties of an  290 kDa ( 100 nm long) tryptic fragment from the I-band part of titin that is extensible in situ. The fragment includes the conserved ‘distal’ tandem Ig segment of the molecule and forms side-by-side oligomers with distinctive 4 nm cross-striations. Comparisons between these oligomers and the end filaments seen at the tips of native thick filaments indicate identical structure. This shows that end-filaments are formed by the elastic parts of six titin molecules connecting each end of the thick filament to the Z-line. Self-association of elastic titin into stiff end-filaments adds a further hierarchical level in the mechanism of titin extensibility in muscle cells. Self-association of this part of titin may be required to prevent interference of the individual flexible molecules with myosin cross-bridges interacting with actin.  相似文献   

2.
Previously, we reported that chromosomes contain a giant filamentous protein, which we identified as titin, a component of muscle sarcomeres. Here, we report the sequence of the entire titin gene in Drosophila melanogaster, D-Titin, and show that it encodes a two-megadalton protein with significant colinear homology to the NH(2)-terminal half of vertebrate titin. Mutations in D-Titin cause chromosome undercondensation, chromosome breakage, loss of diploidy, and premature sister chromatid separation. Additionally, D-Titin mutants have defects in myoblast fusion and muscle organization. The phenotypes of the D-Titin mutants suggest parallel roles for titin in both muscle and chromosome structure and elasticity, and provide new insight into chromosome structure.  相似文献   

3.
In addition to the role in the spindle apparatus and associated motors, the chromosome themselves play an important role in facilitating chromosome segregation. Sister chromatids are joined at the centromere through a protein complex called cohesin. Chromatids separation requires the degradation by separase of specific proteins acting as a glue to form the cohesin complex. This evolutionally complex is required for the establishment and maintenance of sister chromatids in a ring like structure. It is therefore a key question whether cohesin is indeed a main component of active centromere. Cohesin is insufficient to resist the splitting force exerted by microtubules until anaphase and must be renforced by cohesion provided by flanking DNA. The ring model suggests that cohesine might possess a considerable mobility when associated with chromatin. Observations demonstrate that the interior region of the centromere behaves as an elastic element. Chromosomes display remarkable elasticity, returning to their initial shape after being extended by up to 10 times. For larger deformations the thick filament is converted in thin filament which can be stretched six times before breaking. This article suggests an additional and novel role for the protein titin on chromosome structure and dynamic. Titine was identified as a chromosomal component and it was hypothesised that titin may provide elasticity to chromosome and resistance to chromosome breakages during mitosis. The elastic properties of purified titin correspond well to the elastic properties of chromosome in living cells. The deformability and bending rigidity are consistent with a model developed for titin elasticity. The association of the presence of cohesine ring and the activity of titin could be necessary for segregation.  相似文献   

4.
The sarcomeres of skeletal and cardiac muscle are highly structured protein arrays, consisting of thick and thin filaments aligned precisely to one another and to their surrounding matrix. The contractile mechanisms of sarcomeres are generally well understood, but how the patterning of sarcomeres is initiated during early skeletal muscle and cardiac development remains uncertain. Two of the most widely accepted hypotheses for this process include the “molecular ruler” model, in which the massive protein titin defines the length of the sarcomere and provides a scaffold along which the myosin thick filament is assembled, and the “premyofibril” model, which proposes that thick filament formation does not require titin, but that a “premyofibril” consisting of non-muscle myosin, α-actinin and cytoskeletal actin is used as a template. Each model posits a different order of necessity of the various components, but these have been difficult to test in vivo. Zebrafish motility mutants with developmental defects in sarcomere patterning are useful for the elucidation of such mechanisms, and here we report the analysis of the herzschlag mutant, which shows deficits in both cardiac and skeletal muscle. The herzschlag mutant produces a truncated titin protein, lacking the C-terminal rod domain that is proposed to act as a thick filament scaffold, yet muscle patterning is still initiated, with grossly normal thick and thin filament assembly. Only after embryonic muscle contraction begins is breakdown of sarcomeric myosin patterning observed, consistent with the previously noted role of titin in maintaining the contractile integrity of mature sarcomeres. This conflicts with the “molecular ruler” model of early sarcomere patterning and supports a titin-independent model of thick filament organization during sarcomerogenesis. These findings are also consistent with the symptoms of human titin myopathies that exhibit a late onset, such as tibial muscular dystrophy.  相似文献   

5.
The giant protein titin is responsible for the elasticity of nonactivated muscle sarcomeres. Titin-based passive stiffness in myocardium is modulated by titin-isoform switching and protein-kinase (PK)A- or PKG-dependent titin phosphorylation. Additional modulatory effects on titin stiffness may arise from disulfide bonding under oxidant stress, as many immunoglobulin-like (Ig-)domains in titin's spring region have a potential for S-S formation. Using single-molecule atomic force microscopy (AFM) force-extension measurements on recombinant Ig-domain polyprotein constructs, we show that titin Ig-modules contain no stabilizing disulfide bridge, contrary to previous belief. However, we demonstrate that the human N2-B-unique sequence (N2-Bus), a cardiac-specific, physiologically extensible titin segment comprising 572 amino-acid residues, contains up to three disulfide bridges under oxidizing conditions. AFM force spectroscopy on recombinant N2-Bus molecules demonstrated a much shorter contour length in the absence of a reducing agent than in its presence, consistent with intramolecular S-S bonding. In stretch experiments on isolated human heart myofibrils, the reducing agent thioredoxin lowered titin-based stiffness to a degree that could be explained (using entropic elasticity theory) by altered extensibility solely of the N2-Bus. We conclude that increased oxidant stress can elevate titin-based stiffness of cardiomyocytes, which may contribute to the global myocardial stiffening frequently seen in the aging or failing heart.  相似文献   

6.
This review considers data on structural and functional features of titin, on the role of this protein in determination of mechanical properties of sarcomeres, and on specific features of regulation of the stiffness and elasticity of its molecules, amyloid aggregation of this protein in vitro, and possibilities of formation of intramolecular amyloid structure in vivo. Molecular mechanisms are described of protection of titin against aggregation in muscle cells. Based on the data analysis, it is supposed that titin and the formed by it elastic filaments have features of amyloid.  相似文献   

7.
Titin: a molecular control freak.   总被引:7,自引:0,他引:7  
Recent studies of the giant protein titin have shed light on its roles in muscle assembly and elasticity and include the surprising findings described here. We now know that the titin kinase domain, which has long been a puzzle, has a novel regulation mechanism. A substrate, telethonin, has been identified that is located over one micron away from the kinase domain in mature muscle. Single-molecule studies have demonstrated the fascinating process of reversible mechanical unfolding of titin. Lastly, and most surprisingly, it has been claimed that titin controls assembly and elasticity in chromosomes.  相似文献   

8.
The giant protein titin is the third most abundant protein of vertebrate striated muscle. The titin molecule is >1 μm long and spans half the sarcomere, from the Z-disk to the M-line, and has important roles in sarcomere assembly, elasticity and intracellular signaling. In the A-band of the sarcomere titin is attached to the thick filaments and mainly consists immunoglobulin-like and fibronectin type III-like domains. These are mostly arranged in long-range patterns or ‘super-repeats’. The large super-repeats each contain 11 domains and are repeated 11 times, thus forming nearly half the titin molecule. Through interactions with myosin and C-protein, they are involved in thick filament assembly. The importance of titin in muscle assembly is highlighted by the effect of mutations in the A-band portion, which are the commonest cause of dilated cardiomyopathy, affecting ~1 in 250 (Herman et al. in N Engl J Med 366:619–628, 2012). Here we report backbone 15N, 13C and 1H chemical shift and 13Cβ assignments for the A59–A60 domain tandem from the titin A59–A69 large super-repeat, completed using triple resonance NMR. Since, some regions of the backbone remained unassigned in A60 domain of the complete A59–A60 tandem, a construct containing a single A60 domain, A60sd, was also studied using the same methods. Considerably improved assignment coverage was achieved using A60sd due to its lower mass and improved molecular tumbling rate; these assignments also allowed the analysis of inter-domain interactions using chemical shift mapping against A59–A60.  相似文献   

9.
Titin (also called connectin) is a major protein in sarcomere assembly as well as providing elastic return of the sarcomere postcontraction in cardiac and striated skeletal muscle tissues. In addition, it has been speculated that titin is associated with nuclear functions, including chromosome and spindle formation, and regulation of muscle gene expression. In the present study, a short isoform of titin was detected in a human osteoblastic cell line, MG-63 cells, by both immunostaining and Western blot analysis. Confocal images of titin staining showed both cytoplasmic and nuclear localization in a punctate pattern. Therefore, we hypothesized that human titin may contain a nuclear localization signal (NLS). A functional NLS, 200-PAKKTKT-206, located in a low-complexity, titin-specific region between Z2 and Z repeats, was found by sequentially deleting segments of the NH2-terminal sequence in conjunction with an enhanced green fluorescent protein reporter system and confirmed by site-directed mutagenesis. Overexpression of titin's amino terminal fragment (Z1Z2Zr) in human osteoblasts (MG-63) increased cell proliferation by activating the Wnt/β-catenin pathway. RT-PCR screens of tissue panels demonstrated that residues 1–206 were ubiquitously expressed at low levels in all tissues and cell types analyzed. Our data implicate a dual role for titin's amino terminal region, i.e., a novel nuclear function promoting cell division in addition to its known structural role in Z-line assembly. Wnt; catenin; osteoblast  相似文献   

10.
11.
Summary An experimental approach towards the molecular analysis of the male fertility function, located in interval 6 of the human Y chromosome, is presented. This approach is not based on the knowledge of any gene product but on the assumption that the functional DNA structure of male fertility genes, evolutionary conserved with their position on the Y chromosome, may contain an evolutionary conserved frame structure or at least conserved sequence elements. We tested this hypothesis by using dhMiF1, a fertility gene sequence of the Y chromosome of Drosophila hydei, as a screening probe on a pool of cloned human Y-DNA sequences. We were able to select 10 human Y-DNA sequences of which 7 could be mapped to Y interval 6 (the pY6H sequence family). Since the only fertility gene of the human Y chromosome is mapped to the same Y interval, our working hypothesis seems to be strongly supported. Most interesting in this respect is the isolation of the Y-specific repetitive pY6H65 sequence. The pY6H65 locus extends to a length of at least 300 kb in Y interval 6 and has a locus-specific repetitive sequence organization, reminiscent of the functional DNA structure of Y chromosomal fertility genes of Drosophila. We identified the simple sequence family (CA)n as one sequence element conserved between the Drosophila dhMiFi fertility gene sequence and the homologous human Y-DNA sequences.  相似文献   

12.
13.
The kinetochore is an essential structure that mediates accurate chromosome segregation in mitosis and meiosis. While many of the kinetochore components have been identified, the mechanisms of kinetochore assembly remain elusive. Here, we identify a novel role for Snap29, an unconventional SNARE, in promoting kinetochore assembly during mitosis in Drosophila and human cells. Snap29 localizes to the outer kinetochore and prevents chromosome mis‐segregation and the formation of cells with fragmented nuclei. Snap29 promotes accurate chromosome segregation by mediating the recruitment of Knl1 at the kinetochore and ensuring stable microtubule attachments. Correct Knl1 localization to kinetochore requires human or Drosophila Snap29, and is prevented by a Snap29 point mutant that blocks Snap29 release from SNARE fusion complexes. Such mutant causes ectopic Knl1 recruitment to trafficking compartments. We propose that part of the outer kinetochore is functionally similar to membrane fusion interfaces.  相似文献   

14.
The molecular characterization of muscular dystrophies and myopathies in humans has revealed the complexity of muscle disease and genetic analysis of muscle specification, formation and function in model systems has provided valuable insight into muscle physiology. Therefore, identifying and characterizing molecular mechanisms that underlie muscle damage is critical. The structure of adult Drosophila multi-fiber muscles resemble vertebrate striated muscles 1 and the genetic tractability of Drosophila has made it a great system to analyze dystrophic muscle morphology and characterize the processes affecting muscular function in ageing adult flies 2. Here we present the histological technique for preparing paraffin-embedded and frozen sections of Drosophila thoracic muscles. These preparations allow for the tissue to be stained with classical histological stains and labeled with protein detecting dyes, and specifically cryosections are ideal for immunohistochemical detection of proteins in intact muscles. This allows for analysis of muscle tissue structure, identification of morphological defects, and detection of the expression pattern for muscle/neuron-specific proteins in Drosophila adult muscles. These techniques can also be slightly modified for sectioning of other body parts.  相似文献   

15.
Chromosomal location has a significant effect on the evolutionary dynamics of genes involved in sexual dimorphism, impacting both the pattern of sex-specific gene expression and the rate of duplication and protein evolution for these genes. For nearly all non-model organisms, however, knowledge of chromosomal gene content is minimal and difficult to obtain on a genomic scale. In this study, we utilized Comparative Genomic Hybridization (CGH), using probes designed from EST sequence, to identify genes located on the X chromosome of four species in the stalk-eyed fly genus Teleopsis. Analysis of log2 ratio values of female-to-male hybridization intensities from the CGH microarrays for over 3,400 genes reveals a strongly bimodal distribution that clearly differentiates autosomal from X-linked genes for all four species. Genotyping of 33 and linkage mapping of 28 of these genes in Teleopsis dalmanni indicate the CGH results correctly identified chromosomal location in all cases. Syntenic comparison with Drosophila indicates that 90% of the X-linked genes in Teleopsis are homologous to genes located on chromosome 2L in Drosophila melanogaster, suggesting the formation of a nearly complete neo-X chromosome from Muller element B in the dipteran lineage leading to Teleopsis. Analysis of gene movement both relative to Drosophila and within Teleopsis indicates that gene movement is significantly associated with 1) rates of protein evolution, 2) the pattern of gene duplication, and 3) the evolution of eyespan sexual dimorphism. Overall, this study reveals that diopsids are a critical group for understanding the evolution of sex chromosomes within Diptera. In addition, we demonstrate that CGH is a useful technique for identifying chromosomal sex-linkage and should be applicable to other organisms with EST or partial genomic information.  相似文献   

16.
Myofibril assembly and disassembly are complex processes that regulate overall muscle mass. Titin kinase has been implicated as an initiating catalyst in signaling pathways that ultimately result in myofibril growth. In titin, the kinase domain is in an ideal position to sense mechanical strain that occurs during muscle activity. The enzyme is negatively regulated by intramolecular interactions occurring between the kinase catalytic core and autoinhibitory/regulatory region. Molecular dynamics simulations suggest that human titin kinase acts as a force sensor. However, the precise mechanism(s) resulting in the conformational changes that relieve the kinase of this autoinhibition are unknown. Here we measured the mechanical properties of the kinase domain and flanking Ig/Fn domains of the Caenorhabditis elegans titin-like proteins twitchin and TTN-1 using single-molecule atomic force microscopy. Our results show that these kinase domains have significant mechanical resistance, unfolding at forces similar to those for Ig/Fn β-sandwich domains (30-150 pN). Further, our atomic force microscopy data is consistent with molecular dynamic simulations, which show that these kinases unfold in a stepwise fashion, first an unwinding of the autoinhibitory region, followed by a two-step unfolding of the catalytic core. These data support the hypothesis that titin kinase may function as an effective force sensor.  相似文献   

17.
Titin, the largest protein in the human body, is well known as a molecular spring in muscle cells and scaffold protein aiding myofibrillar assembly. However, recent evidence has established another important role for titin: that of a regulatory node integrating, and perhaps coordinating, diverse signaling pathways, particularly in cardiomyocytes. We review key findings within this emerging field, including those related to phosphorylation of the titin springs, and also discuss how titin participates in hypertrophic gene regulation and protein quality control.  相似文献   

18.
Muscle assembly: a titanic achievement?   总被引:13,自引:0,他引:13  
The formation of perfectly aligned myofibrils in striated muscle represents a dramatic example of supramolecular assembly in eukaryotic cells. Recently, considerable progress has been made in deciphering the roles that titin, the third most abundant protein in muscle, has in this process. An increasing number of sarcomeric proteins (ligands) are being identified that bind to specific titin domains. Titin may serve as a molecular blueprint for sarcomere assembly and turnover by specifying the precise position of its ligands within each half-sarcomere in addition to functioning as a molecular spring that maintains the structural integrity of the contracting myofibrils.  相似文献   

19.

Background

Arthropod cuticle is composed predominantly of a self-assembling matrix of chitin and protein. Genes encoding structural cuticular proteins are remarkably abundant in arthropod genomes, yet there has been no systematic survey of conserved motifs across cuticular protein families.

Methodology/Principal Findings

Two short sequence motifs with conserved tyrosines were identified in Drosophila cuticular proteins that were similar to the GYR and YLP Interpro domains. These motifs were found in members of the CPR, Tweedle, CPF/CPFL, and (in Anopheles gambiae) CPLCG cuticular protein families, and the Dusky/Miniature family of cuticle-associated proteins. Tweedle proteins have a characteristic motif architecture that is shared with the Drosophila protein GCR1 and its orthologs in other species, suggesting that GCR1 is also cuticular. A resilin repeat, which has been shown to confer elasticity, matched one of the motifs; a number of other Drosophila proteins of unknown function exhibit a motif architecture similar to that of resilin. The motifs were also present in some proteins of the peritrophic matrix and the eggshell, suggesting molecular convergence among distinct extracellular matrices. More surprisingly, gene regulation, development, and proteolysis were statistically over-represented ontology terms for all non-cuticular matches in Drosophila. Searches against other arthropod genomes indicate that the motifs are taxonomically widespread.

Conclusions

This survey suggests a more general definition for GYR and YLP motifs and reveals their contribution to several types of extracellular matrix. They may define sites of protein interaction with DNA or other proteins, based on ontology analysis. These results can help guide experimental studies on the biochemistry of cuticle assembly.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号