首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Serine palmitoyltransferase catalyzes the first step of sphingolipid synthesis, condensation of serine and palmitoyl CoA to form the long chain base 3-ketosphinganine. The LCB1/TSC2 and LCB2/TSC1 genes encode homologous proteins of the alpha-oxoamine synthase family required for serine palmitoyltransferase activity. The other alpha-oxoamine synthases are soluble homodimers, but serine palmitoyltransferase is a membrane-associated enzyme composed of at least two subunits, Lcb1p and Lcb2p. Here, we report the characterization of a third gene, TSC3, required for optimal 3-ketosphinganine synthesis in Saccharomyces cerevisiae. S. cerevisiae cells lacking the TSC3 gene have a temperature-sensitive lethal phenotype that is reversed by supplying 3-ketosphinganine, dihydrosphingosine, or phytosphingosine in the growth medium. The tsc3 mutant cells have severely reduced serine palmitoyltransferase activity. The TSC3 gene encodes a novel 80-amino acid protein with a predominantly hydrophilic amino-terminal half and a hydrophobic carboxyl terminus that is membrane-associated. Tsc3p coimmunoprecipitates with Lcb1p and/or Lcb2p but does not bind as tightly as Lcb1p and Lcb2p bind to each other. Lcb1p and Lcb2p remain tightly associated with each other and localize to the membrane in cells lacking Tsc3p. However, Lcb2p is unstable in cells lacking Lcb1p and vice versa.  相似文献   

2.
The structural organization and topology of the Lcb1p subunit of yeast and mammalian serine palmitoyltransferases (SPT) were investigated. In the yeast protein, three membrane-spanning domains were identified by insertion of glycosylation and factor Xa cleavage sites at various positions. The first domain of the yeast protein, located between residues 50 and 84, was not required for the stability, membrane association, interaction with Lcb2p, or enzymatic activity. Deletion of the comparable domain of the mammalian protein SPTLC1 also had little effect on its function, demonstrating that this region is not required for membrane localization or heterodimerization with SPTLC2. The second and third membrane-spanning domains of yeast Lcb1p, located between residues 342 and 371 and residues 425 and 457, respectively, create a luminal loop of approximately 60 residues. In contrast to the first membrane-spanning domain, the second and third membrane-spanning domains were both required for Lcb1p stability. In addition, mutations in the luminal loop destabilized the SPT heterodimer indicating that this region of the protein is important for SPT structure and function. Mutations in the extreme carboxyl-terminal region of Lcb1p also disrupted heterodimer formation. Taken together, these data suggest that in contrast to other members of the alpha-oxoamine synthases that are soluble homodimers, the Lcb1p and Lcb2p subunits of the SPT heterodimer may interact in the cytosol, as well as within the membrane and/or the lumen of the endoplasmic reticulum.  相似文献   

3.
It was recently demonstrated that mutations in the human SPTLC1 gene, encoding the Lcb1p subunit of serine palmitoyltransferase (SPT), cause hereditary sensory neuropathy type I . As a member of the subfamily of pyridoxal 5'-phosphate enzymes known as the alpha-oxoamine synthases, serine palmitoyltransferase catalyzes the committed step of sphingolipid synthesis. The residues that are mutated to cause hereditary sensory neuropathy type I reside in a highly conserved region of Lcb1p that is predicted to be a catalytic domain of Lcb1p on the basis of alignments with other members of the alpha-oxoamine synthase family. We found that the corresponding mutations in the LCB1 gene of Saccharomyces cerevisiae reduce serine palmitoyltransferase activity. These mutations are dominant and decrease serine palmitoyltransferase activity by 50% when the wild-type and mutant LCB1 alleles are coexpressed. We also show that serine palmitoyltransferase is an Lcb1p small middle dotLcb2p heterodimer and that the mutated Lcb1p proteins retain their ability to interact with Lcb2p. Modeling studies suggest that serine palmitoyltransferase is likely to have a single active site that lies at the Lcb1p small middle dotLcb2p interface and that the mutations in Lcb1p reside near the lysine in Lcb2p that is expected to form the Schiff's base with the pyridoxal 5'-phosphate cofactor. Furthermore, mutations in this lysine and in a histidine residue that is also predicted to be important for pyridoxal 5'-phosphate binding to Lcb2p also dominantly inactivate SPT similar to the hereditary sensory neuropathy type 1-like mutations in Lcb1p.  相似文献   

4.
Long chain sphingoid bases (LCBs) and their phosphates (LCBPs) are not only important intermediates in ceramide biosynthesis but also signaling molecules in the yeast, Saccharomyces cerevisiae. Their cellular levels, which control multiple cellular events in response to external and intrinsic signals, are tightly regulated by coordinated action of metabolic enzymes such as LCB kinase and LCBP phosphatase. However, little is known about the mechanisms by which the two enzymes generate biosynthetic or signaling outputs. It has been shown that the LCBP phosphatase, Lcb3p, is required for efficient ceramide synthesis from exogenous LCB. Here we present direct evidence that the major LCB kinase, Lcb4p, but not the minor kinase, Lcb5p, regulates synthesis of ceramide from exogenously added LCB. Surprisingly, our biochemical evidence suggests that the LCBP used for ceramide synthesis must be generated on the membrane. Our data show that Lcb4p is tightly associated with membranes and is localized to the endoplasmic reticulum where it can work in concert with Lcb3p. These results raise the conceptually attractive possibility that membrane-associated and cytosolic Lcb4p play distinct roles to differentially generate biosynthetic and signaling pools of LCBP.  相似文献   

5.
6.
Sphingolipids are the structural components of membrane lipid bilayers and act as signaling molecules in many cellular processes.Serine palmitoyltransferase(SPT) is the first committed and rate-limiting enzyme in the de novo sphingolipids biosynthetic pathway.The core SPT enzyme is a heterodimer consisting of LONG-CHAIN BASE1(LCB1) and LCB2 subunits.SPT activity is inhibited by orosomucoid proteins and stimulated by small subunits of SPT(ssSPTs).However,whether LCB1 is modified and how such modi...  相似文献   

7.
Serine palmitoyltransferase (SPT), the enzyme catalyzing the initial step in the biosynthesis of sphingolipids, comprises two different subunits, LCB1 and LCB2. LCB1 has a single highly hydrophobic domain near the N terminus. Chinese hamster ovary cell mutant LY-B cells are defective in SPT activity because of the lack of expression of an endogenous LCB1 subunit. Stable expression of LCB1 having an epitope tag at either the N or C terminus restored SPT activity of LY-B cells, suggesting that the epitope tag did not affect the localization or topology of LCB1. Indirect immunostaining showed that the N- and C-terminal epitopes are oriented toward the lumenal and cytosol side, respectively, at the endoplasmic reticulum. Interestingly, there was far less LCB2 in LY-B cells than in wild-type cells, and the amount of LCB2 in LY-B cells was restored to the wild-type level by transfection with LCB1 cDNA. In addition, overproduction of the LCB2 subunit required co-overproduction of the LCB1 subunit. These results indicated that the LCB1 subunit is most likely an integral protein having a single transmembrane domain with a lumenal orientation of its N terminus in the endoplasmic reticulum and that the LCB1 subunit is indispensable for the maintenance of the LCB2 subunit in mammalian cells.  相似文献   

8.
Chen M  Han G  Dietrich CR  Dunn TM  Cahoon EB 《The Plant cell》2006,18(12):3576-3593
Serine palmitoyltransferase (SPT) catalyzes the first step of sphingolipid biosynthesis. In yeast and mammalian cells, SPT is a heterodimer that consists of LCB1 and LCB2 subunits, which together form the active site of this enzyme. We show that the predicted gene for Arabidopsis thaliana LCB1 encodes a genuine subunit of SPT that rescues the sphingolipid long-chain base auxotrophy of Saccharomyces cerevisiae SPT mutants when coexpressed with Arabidopsis LCB2. In addition, homozygous T-DNA insertion mutants for At LCB1 were not recoverable, but viability was restored by complementation with the wild-type At LCB1 gene. Furthermore, partial RNA interference (RNAi) suppression of At LCB1 expression was accompanied by a marked reduction in plant size that resulted primarily from reduced cell expansion. Sphingolipid content on a weight basis was not changed significantly in the RNAi suppression plants, suggesting that plants compensate for the downregulation of sphingolipid synthesis by reduced growth. At LCB1 RNAi suppression plants also displayed altered leaf morphology and increases in relative amounts of saturated sphingolipid long-chain bases. These results demonstrate that plant SPT is a heteromeric enzyme and that sphingolipids are essential components of plant cells and contribute to growth and development.  相似文献   

9.
The non-conventional yeast Pichia ciferrii is known to secrete the sphingoid long-chain base phytosphingosine in a tetraacetylated form (TAPS). Sphingolipids are important ingredients in cosmetic applications as they play important roles in human skin. Our work aimed to improve TAPS production by genetic engineering of P. ciferrii. In the first step we improved precursor availability by blocking degradation of L-serine, which is condensed with palmitoyl-CoA by serine palmitoyltransferase in the first committed step of sphingolipid biosynthesis. Successive deletion of two genes, SHM1 and SHM2, encoding L-serine hydroxymethyltransferases, and of CHA1 encoding L-serine deaminase, resulted in a strain producing 65 mg((TAPS))g(-1)((cdw)), which is a threefold increase in comparison with the parental strain. Attempts to increase the metabolic flux into and through the L-serine biosynthesis pathway did not improve TAPS production. However, genetic engineering of the sphingolipid pathway further increased secretion of TAPS. Blocking of sphingoid long-chain base phosphorylation by deletion of the LCB kinase gene PcLCB4 resulted in a further increase in TAPS production by 78% and significant secretion of the direct precursor of phytosphingosine, sphinganin, in a triacetylated form (TriASa). Overproduction of two serine palmitoyltransferase subunits, Lcb1 and Lcb2, together with a deletion of the gene ORM12 encoding a putative negative regulator of sphingolipid synthesis resulted in a strain producing 178 mg((TAPS))g(-1)((cdw)). Additional overproduction of the C4-hydroxylase Syr2 converting sphinganine to phytosphingosine reduced TriASa production and further improved TAPS production. The final recombinant P. ciferrii strain produced up to 199 mg((TAPS))g(-1)((cdw)) with a maximal production rate of 8.42 mg×OD(600nm)(-1)h(-1) and a titer of about 2 g L(-1), and should be applicable for industrial TAPS production.  相似文献   

10.
The genus Coccolithovirus is a recently discovered group of viruses that infect the globally important marine calcifying microalga Emiliania huxleyi. Surprisingly, the viral genome contains a cluster of putative sphingolipid biosynthetic genes not found in other viral genus. To address the role of these genes in viral pathogenesis, the ehv050 gene predicted to encode a serine palmitoyltransferase (SPT), the first and rate-limiting enzyme of sphingolipid biosynthesis, was expressed and characterized in Saccharomyces cerevisiae. We show that the encoded protein is indeed a fully functional, endoplasmic reticulum-localized, single-chain SPT. In eukaryotes SPT is a heterodimer comprised of long chain base 1 (LCB1) and LCB2 subunits. Sequence alignment and mutational analysis showed that the N-terminal domain of the viral protein most closely resembled the LCB2 subunit and the C-terminal domain most closely resembled the LCB1 subunit. Regardless of whether the viral protein was expressed as a single polypeptide or as two independent domains, it exhibited an unusual preference for myristoyl-CoA rather than palmitoyl-CoA. This preference was reflected by the increased presence of C16-sphingoid bases in yeast cells expressing the viral protein. The occurrence of a single-chain SPT suggested to us that it might be possible to create other fusion SPTs with unique properties. Remarkably, when the two subunits of the yeast SPT were thus expressed, the single-chain chimera was functional and displayed a novel substrate preference. This suggests that expression of other multisubunit membrane proteins as single-chain chimera could provide a powerful approach to the characterization of integral membrane proteins.  相似文献   

11.
The yeast SM22 homologue Scp1 has previously been shown to act as an actin-bundling protein in vitro. In cells, Scp1 localizes to the cortical actin patches that form as part of the invagination process during endocytosis, and its function overlaps with that of the well characterized yeast fimbrin homologue Sac6p. In this work we have used live cell imaging to demonstrate the importance of key residues in the Scp1 actin interface. We have defined two actin binding domains within Scp1 that allow the protein to both bind and bundle actin without the need for dimerization. Green fluorescent protein-tagged mutants of Scp1 also indicate that actin localization does not require the putative phosphorylation site Ser-185 to be functional. Deletion of SCP1 has few discernable effects on cell growth and morphology. However, we reveal that scp1 deletion is compensated for by up-regulation of Sac6. Furthermore, Scp1 levels are increased in the absence of sac6. The presence of compensatory pathways to up-regulate Sac6 or Scp1 levels in the absence of the other suggest that maintenance of sufficient bundling activity is critical within the cell. Analysis of cortical patch assembly and movement during endocytosis reveals a previously undetected role for Scp1 in movement of patches away from the plasma membrane. Additionally, we observe a dramatic increase in patch lifetime in a strain lacking both sac6 and scp1, demonstrating the central role played by actin-bundling proteins in the endocytic process.  相似文献   

12.
In yeast, Tsc10p catalyzes reduction of 3-ketosphinganine to dihydrosphingosine. In mammals, it has been proposed that this reaction is catalyzed by FVT1, which despite limited homology and a different predicted topology, can replace Tsc10p in yeast. Silencing of FVT1 revealed a direct correlation between FVT1 levels and reductase activity, showing that FVT1 is the principal 3-ketosphinganine reductase in mammalian cells. Localization and topology studies identified an N-terminal membrane-spanning domain in FVT1 (absent in Tsc10p) oriented to place it in the endoplasmic reticulum (ER) lumen. In contrast, protease digestion studies showed that the N terminus of Tsc10p is cytoplasmic. Fusion of the N-terminal domain of FVT1 to green fluorescent protein directed the fusion protein to the ER, demonstrating that it is sufficient for targeting. Although both proteins have two predicted transmembrane domains C-terminal to a cytoplasmic catalytic domain, neither had an identifiable lumenal loop. Nevertheless, both Tsc10p and the residual fragment of FVT1 produced by removal of the N-terminal domain with factor Xa protease behave as integral membrane proteins. In addition to their topological differences, mutation of conserved catalytic residues had different effects on the activities of the two enzymes. Thus, while FVT1 can replace Tsc10p in yeast, there are substantial differences between the two enzymes that may be important for regulation of sphingolipid biosynthesis in higher eukaryotes.  相似文献   

13.
Serine palmitoyltransferase (SPT), a membrane-bound enzyme of the endoplasmic reticulum, catalyzes the condensation of palmitoyl coenzyme A (CoA) and L-serine to produce 3-ketodihydrosphingosine. This enzyme contains at least two different subunits, named the LCB1 and LCB2 proteins. In the present study, we expressed a FLAG- and His(6) peptide-tagged version of the hamster LCB1 protein in a Chinese hamster ovary cell mutant strain lacking the endogenous LCB1 subunit and purified SPT from the cells near to homogeneity by affinity peptide chromatography. The endogenous LCB2 protein was co-purified with the tagged LCB1 protein in purification of SPT. In various aspects, including optimum pH, acyl-CoA specificity, and sphingofungin sensitivity, the activity of purified SPT was consistent with the activity detected in lysates of wild-type Chinese hamster ovary cells. The optimum concentration of palmitoyl-CoA for 3-ketodihydrosphingosine formation by purified SPT was approximately 25 microM, and the apparent K(m) of L-serine was 0.28 mM. Competition analysis of the SPT reaction with various serine analogs showed that all of the amino, carboxyl, and hydroxyl groups of L-serine were responsible for the substrate recognition of the enzyme. SDS-polyacrylamide gel electrophoretic analysis of purified SPT, together with immunoprecipitation analysis of metabolically labeled LCB proteins, strongly suggested that the SPT enzyme consisted of the LCB1 and LCB2 proteins with a stoichiometry of 1:1.  相似文献   

14.
15.
The yeast phosphoinositide phosphatase Sac1p localizes to endoplasmic reticulum (ER) and Golgi membranes and has compartment-specific functions in these organelles. In this study we analyzed in detail the topology of Sac1p. Our data show that Sac1p is a type II transmembrane protein with a large N-terminal cytosolic domain, which is anchored in the membrane by the two potential transmembrane helices near the C terminus. Based on this topology, we created a mutation that caused retention of Sac1p in the ER and as a consequence showed specific alterations in cellular phosphoinositide levels. Our results suggest that Sac1p controls a pool of phosphatidylinositol 3-phosphate and phosphatidylinositol 4-phosphate in the ER. Retention of Sac1p in the ER also stimulates ATP transport into the ER lumen but causes the same Golgi-specific defects that are seen in a sac1 null mutant. Taken together this study provides evidence that Sac1p is an important 4-phosphatase in the ER controlling different aspects of ER-based protein processing and secretion.  相似文献   

16.
Rer1p, a yeast Golgi membrane protein, is required for the retrieval of a set of endoplasmic reticulum (ER) membrane proteins. We present the first evidence that Rer1p directly interacts with the transmembrane domain (TMD) of Sec12p which contains a retrieval signal. A green fluorescent protein (GFP) fusion of Rer1p rapidly cycles between the Golgi and the ER. Either a lesion of coatomer or deletion of the COOH-terminal tail of Rer1p causes its mislocalization to the vacuole. The COOH-terminal Rer1p tail interacts in vitro with a coatomer complex containing alpha and gamma subunits. These findings not only give the proof that Rer1p is a novel type of retrieval receptor recognizing the TMD in the Golgi but also indicate that coatomer actively regulates the function and localization of Rer1p.  相似文献   

17.
The Saccharomyces cerevisiae SAC1 gene was identified via independent analyses of mutations that modulate yeast actin function and alleviate the essential requirement for phosphatidylinositol transfer protein (Sec14p) activity in Golgi secretory function. The SAC1 gene product (Sac1p) is an integral membrane protein of the endoplasmic reticulum and the Golgi complex. Sac1p shares primary sequence homology with a subfamily of cytosolic/peripheral membrane phosphoinositide phosphatases, the synaptojanins, and these Sac1 domains define novel phosphoinositide phosphatase modules. We now report the characterization of a rat counterpart of Sac1p. Rat Sac1 is a ubiquitously expressed 65-kDa integral membrane protein of the endoplasmic reticulum that is found at particularly high levels in cerebellar Purkinje cells. Like Sac1p, rat Sac1 exhibits intrinsic phosphoinositide phosphatase activity directed toward phosphatidylinositol 3-phosphate, phosphatidylinositol 4-phosphate, and phosphatidylinositol 3,5-bisphosphate substrates, and we identify mutant rat sac1 alleles that evoke substrate-specific defects in this enzymatic activity. Finally, rat Sac1 expression in Deltasac1 yeast strains complements a wide phenotypes associated with Sac1p insufficiency. Biochemical and in vivo data indicate that rat Sac1 phosphatidylinositol-4-phosphate phosphatase activity, but not its phosphatidylinositol-3-phosphate or phosphatidylinositol-3, 5-bisphosphate phosphatase activities, is essential for the heterologous complementation of Sac1p defects in vivo. Thus, yeast Sac1p and rat Sac1 are integral membrane lipid phosphatases that play evolutionary conserved roles in eukaryotic cell physiology.  相似文献   

18.
Zhang Y  Shin YK 《Biochemistry》2006,45(13):4173-4181
Membrane fusion in secretory pathways is thought to be mediated by SNAREs. It is proposed that membrane fusion transits through hemifusion, a condition in which the outer leaflets of the bilayers are mixed, but the inner leaflets are not. Hemifusion then proceeds to the fusion pore that connects the two internal contents. It is believed that the transmembrane domains (TMDs) of the fusion proteins play an essential role in the transition from hemifusion to the fusion pore. In this work, the structure, dynamics, and membrane topology of the TMD of Sso1p, a target membrane (t-) SNARE involved in the trafficking from Golgi to plasma membrane in yeast, was investigated using site-directed spin labeling and EPR spectroscopy. The EPR analysis of spin-labeled mutants showed that the TMD of Sso1p is a well-defined membrane spanning alpha-helix. The results also indicate that there is an equilibrium between the monomers and the oligomers. The oligomerization is mainly mediated through the interaction at the N-terminal half of the TMD, whereas the C-terminal half is free of the tertiary interaction. Additionally, the isotropic hyperfine splitting values were examined for nitroxide-scanning mutants, and it was found that the hyperfine splitting values show a V-shaped profile across the bilayer. Thus, hyperfine splitting may be used as an additional parameter to measure bilayer immersion depths of nitroxide.  相似文献   

19.
Serine palmitoyltransferase (SPT; EC 2.3.1.50) catalyzes the condensation of serine with palmitoyl-CoA to form 3-ketosphinganine in the first step of de novo sphingolipid biosynthesis. In this study, we describe the cloning and functional characterization of a cDNA from Arabidopsis thaliana encoding the LCB2 subunit of SPT. The Arabidopsis LCB2 (AtLCB2) cDNA contains an open reading frame of 1,467 nucleotides, encoding 489 amino acids. The predicted polypeptide contains three transmembrane helices and a highly conserved motif involved in pyridoxal phosphate binding. Expression of this open reading frame in the Saccharomyces cerevisiae mutant strains defective in SPT activity resulted in the expression of a significant level of sphinganine, suggesting that AtLCB2 cDNA encodes SPT. Southern blot analysis and inspection of the complete Arabidopsis genome sequence database suggest that there is a second LCB2-like gene in Arabidopsis. Expression of a green fluorescent protein (GFP) fusion product in suspension-cultured tobacco BY-2 cells showed that AtLCB2 is localized to the endoplasmic reticulum. AtLCB2 cDNA may be used to study how sphingolipid synthesis is regulated in higher plants.  相似文献   

20.
Phosphoinositide phosphatases play an essential but as yet not well-understood role in lipid-based signal transduction. Members of a subfamily of these enzymes share a specific domain that was first identified in the yeast Sac1 protein [1]. Sac1 homology domains were shown to exhibit 3- and 4-phosphatase activity in vitro [2, 3] and were also found, in addition to rat and yeast Sac1p, in yeast Inp/Sjl proteins [4, 5] and mammalian synaptojanins [6]. Despite the detailed in vitro characterization of the enzymatic properties of yeast Sac1p, the exact cellular function of this protein has remained obscure. We report here that Sac1p has a specific role in secretion and acts as an antagonist of the phosphatidylinositol 4-kinase Pik1p in Golgi trafficking. Elimination of Sac1p leads to excessive forward transport of chitin synthases and thus causes specific cell wall defects. Similar defects in membrane trafficking are caused by the overexpression of PIK1. Taken together, these findings provide strong evidence that the generation of PtdIns(4)P is sufficient to trigger forward transport from the Golgi to the plasma membrane and that Sac1p is critically required for the termination of this signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号