首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite the presence of a cytosolic fatty acid synthesis pathway, mitochondria have retained their own means of creating fatty acids via the mitochondrial fatty acid synthesis (mtFASII) pathway. The reason for its conservation has not yet been elucidated. Therefore, to better understand the role of mtFASII in the cell, we used thin layer chromatography to characterize the contribution of the mtFASII pathway to the fatty acid composition of selected mitochondrial lipids. Next, we performed metabolomic analysis on HeLa cells in which the mtFASII pathway was either hypofunctional (through knockdown of mitochondrial acyl carrier protein, ACP) or hyperfunctional (through overexpression of mitochondrial enoyl-CoA reductase, MECR). Our results indicate that the mtFASII pathway contributes little to the fatty acid composition of mitochondrial lipid species examined. Additionally, loss of mtFASII function results in changes in biochemical pathways suggesting alterations in glucose utilization and redox state. Interestingly, levels of bioactive lipids, including lysophospholipids and sphingolipids, directly correlate with mtFASII function, indicating that mtFASII may be involved in the regulation of bioactive lipid levels. Regulation of bioactive lipid levels by mtFASII implicates the pathway as a mediator of intracellular signaling.  相似文献   

2.
《Free radical research》2013,47(9):1070-1084
Abstract

In addition to serving as the power house of mammalian cells, mitochondria are crucial for the maintenance of cellular homeostasis in response to physiological or environmental changes. Several lines of evidence suggest that posttranslational modification (PTM) of proteins plays a pivotal role in the regulation of the bioenergetic function of mitochondria. Among them, reversible lysine acetylation of mitochondrial proteins has been established as one of the key mechanisms in cellular response to energy demand by modulating the flux of a number of key metabolic pathways. In this article, we focus on the role of Sirt3-mediated deacetylation in: (1) flexibility of energy metabolism, (2) activation of antioxidant defense, and (3) maintenance of cellular redox status in response to dietary challenge and oxidative stress. We suggest that oxidative stress-elicited down-regulation of Sirt3 plays a role in the pathophysiology of diabetes, cardiac hypotrophy, mitochondrial diseases, and age-related diseases. Besides, the physiological role of newly identified lysine acylation mediated by Sirt5 and its biochemical effects on oxidative metabolism are also discussed. Moreover, we have integrated the regulatory function of several protein kinases that are involved in the phosphorylation of mitochondrial enzymes during oxidative stress. Finally, the functional consequence of the synergistic regulation through diverse protein modifications is emphasized on the maintenance of the bioenergetic homeostasis and metabolic adaptation of the animal and human cells. Together, we have provided an updated review of PTM in mitochondrial biology and their implications in aging and human diseases through an intricate regulation of energy metabolism under oxidative stress.  相似文献   

3.
Proteomic and lipidomic profiling was performed over a time course of acute hepatitis C virus (HCV) infection in cultured Huh-7.5 cells to gain new insights into the intracellular processes influenced by this virus. Our proteomic data suggest that HCV induces early perturbations in glycolysis, the pentose phosphate pathway, and the citric acid cycle, which favor host biosynthetic activities supporting viral replication and propagation. This is followed by a compensatory shift in metabolism aimed at maintaining energy homeostasis and cell viability during elevated viral replication and increasing cellular stress. Complementary lipidomic analyses identified numerous temporal perturbations in select lipid species (e.g. phospholipids and sphingomyelins) predicted to play important roles in viral replication and downstream assembly and secretion events. The elevation of lipotoxic ceramide species suggests a potential link between HCV-associated biochemical alterations and the direct cytopathic effect observed in this in vitro system. Using innovative computational modeling approaches, we further identified mitochondrial fatty acid oxidation enzymes, which are comparably regulated during in vitro infection and in patients with histological evidence of fibrosis, as possible targets through which HCV regulates temporal alterations in cellular metabolic homeostasis.  相似文献   

4.
Autophagy is an evolutionarily conserved mechanism that mediates the degradation of cytoplasmic components in eukaryotic cells. In plants, autophagy has been extensively associated with the recycling of proteins during carbon-starvation conditions. Even though lipids constitute a significant energy reserve, our understanding of the function of autophagy in the management of cell lipid reserves and components remains fragmented. To further investigate the significance of autophagy in lipid metabolism, we performed an extensive lipidomic characterization of Arabidopsis (Arabidopsis thaliana) autophagy mutants (atg) subjected to dark-induced senescence conditions. Our results revealed an altered lipid profile in atg mutants, suggesting that autophagy affects the homeostasis of multiple lipid components under dark-induced senescence. The acute degradation of chloroplast lipids coupled with the differential accumulation of triacylglycerols (TAGs) and plastoglobuli indicates an alternative metabolic reprogramming toward lipid storage in atg mutants. The imbalance of lipid metabolism compromises the production of cytosolic lipid droplets and the regulation of peroxisomal lipid oxidation pathways in atg mutants.

Autophagy is required for the mobilization of membrane lipid components and lipid droplet dynamics during extended darkness in Arabidopsis.  相似文献   

5.
Lipid homeostasis is important for executing normal cellular functions and maintaining physiological conditions. The biophysical properties and intricate metabolic network of lipids underlie the coordinated regulation of different lipid species in lipid homeostasis. To reveal the homeostatic response among different lipids, we systematically knocked down 40 lipid metabolism genes in Drosophila S2 cells by RNAi and profiled the lipidomic changes. Clustering analyses of lipids reveal that many pairs of genes acting in a sequential fashion or sharing the same substrate are tightly clustered. Through a lipid-gene regulatory network analysis, we further found that a reduction of triacylglycerol (TAG) is associated with an increase of phosphatidylinositol (PI) and lysophosphatidylinositol (LPI) or a reduction of hexosyl-ceramide (HexCer) and hydroxylated hexosyl-ceramide (OH-HexCer). Importantly, negative coregulation between TAG and LPI/PI, and positive coregulation between TAG and HexCer, were also found in human Hela cells. Together, our results reveal coregulations of TAG with PI/LPI and with HexCer in lipid homeostasis.  相似文献   

6.
7.
8.
9.
Mitochondria play essential metabolic functions in eukaryotes. Although their major role is the generation of energy in the form of ATP, they are also involved in maintenance of cellular redox state, conversion and biosynthesis of metabolites and signal transduction. Most mitochondrial functions are conserved in eukaryotic systems and mitochondrial dysfunctions trigger several human diseases.By using multi-omics approach, we investigate the effect of methionine supplementation on yeast cellular metabolism, considering its role in the regulation of key cellular processes. Methionine supplementation induces an up-regulation of proteins related to mitochondrial functions such as TCA cycle, electron transport chain and respiration, combined with an enhancement of mitochondrial pyruvate uptake and TCA cycle activity. This metabolic signature is more noticeable in cells lacking Snf1/AMPK, the conserved signalling regulator of energy homeostasis. Remarkably, snf1Δ cells strongly depend on mitochondrial respiration and suppression of pyruvate transport is detrimental for this mutant in methionine condition, indicating that respiration mostly relies on pyruvate flux into mitochondrial pathways.These data provide new insights into the regulation of mitochondrial metabolism and extends our understanding on the role of methionine in regulating energy signalling pathways.  相似文献   

10.
11.
12.
Obesity is a global health issue, as it is associated with increased risk of developing chronic conditions associated with disorders of metabolism such as type 2 diabetes and cardiovascular disease. A better understanding of how excessive fat accumulation develops and causes diseases of the metabolic syndrome is urgently needed. The hypothalamic melanocortin system is an important point of convergence connecting signals of metabolic status with the neural circuitry that governs appetite and the autonomic and neuroendocrine system controling metabolism. This system has a critical role in the defense of body weight and maintenance of homeostasis. Two neural melanocortin receptors, melanocortin 3 and 4 receptors (MC3R and MC4R), play crucial roles in the regulation of energy balance. Mutations in the MC4R gene are the most common cause of monogenic obesity in humans, and a large literature indicates a role in regulating both energy intake through the control of satiety and energy expenditure. In contrast, MC3Rs have a more subtle role in energy homeostasis. Results from our lab indicate an important role for MC3Rs in synchronizing rhythms in foraging behavior with caloric cues and maintaining metabolic homeostasis during periods of nutrient scarcity. However, while deletion of the Mc3r gene in mice alters nutrient partitioning to favor accumulation of fat mass no obvious role for MC3R haploinsufficiency in human obesity has been reported. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.  相似文献   

13.
This report describes the metabolic and lipidomic profiling of 97 low-molecular weight compounds from the primary metabolism and 124 lipid compounds of the diatom Thalassiosira pseudonana. The metabolic profiles were created for diatoms perturbed for 24 hours with four different treatments: (I) removal of nitrogen, (II) lower iron concentration, (III) addition of sea salt, (IV) addition of carbonate to their growth media. Our results show that as early as 24 hours after nitrogen depletion significant qualitative and quantitative change in lipid composition as well as in the primary metabolism of Thalassiosira pseudonana occurs. So we can observe the accumulation of several storage lipids, namely triacylglycerides, and TCA cycle intermediates, of which citric acid increases more than 10-fold. These changes are positively correlated with expression of TCA enzymes genes. Next to the TCA cycle intermediates and storage lipid changes, we have observed decrease in N-containing lipids and primary metabolites such as amino acids. As a measure of counteracting nitrogen starvation, we have observed elevated expression levels of nitrogen uptake and amino acid biosynthetic genes. This indicates that diatoms can fast and efficiently adapt to changing environment by altering the metabolic fluxes and metabolite abundances. Especially, the accumulation of proline and the decrease of dimethylsulfoniopropionate suggest that the proline is the main osmoprotectant for the diatom in nitrogen rich conditions.  相似文献   

14.
ObjectivesBone remodelling is necessary to repair old and impaired bone caused by aging and its effects. Injury in the process of bone remodelling generally leads to the development of various bone diseases. Energy metabolism plays crucial roles in bone cell formation and function, the disorder of which will disrupt the balance between bone formation and bone resorption.Materials and MethodsHere, we review the intrinsic interactions between bone remodelling and energy metabolism and the role of the Wnt signalling pathway.ResultsWe found a close interplay between metabolic pathways and bone homeostasis, demonstrating that bone plays an important role in the regulation of energy balance. We also discovered that Wnt signalling is associated with multiple biological processes regulating energy metabolism in bone cells.ConclusionsThus, targeted regulation of Wnt signalling and the recovery of the energy metabolism function of bone cells are key means for the treatment of metabolic bone diseases.

As a critical physiological process, bone remodelling is necessary to repair impaired bone caused by daily physical load and to prevent the effects of ageing. The homeostasis of bone remodelling largely depends on the balance of energy metabolism, such as glucose, glutamine, and fatty acid metabolism, and the disturbance of which will disrupt the balance between bone formation and bone resorption. Wnt signalling pathway including critical Wnt molecules (Wnt3a, Wnt7b, Wnt10b) is significant in these life processes, which links the intrinsic interactions between bone remodelling and energy metabolism, making it a promising target for the treatment of metabolic bone diseases.  相似文献   

15.

Background

Metabolic flexibility is the ability of cells to change substrates for energy production based on the nutrient availability and energy requirement. It has been shown that metabolic flexibility is impaired in obesity and chronic diseases such as type 2 diabetes mellitus, cardiovascular diseases, and metabolic syndrome, although, whether it is a cause or an effect of these conditions remains to be elucidated.

Main body

In this paper, we have reviewed the literature on metabolic flexibility and curated pathways and processes resulting in a network resource to investigate the interplay between these processes in the subcutaneous adipose tissue. The adipose tissue has been shown to be responsible, not only for energy storage but also for maintaining energy homeostasis through oxidation of glucose and fatty acids. We highlight the role of pyruvate dehydrogenase complex–pyruvate dehydrogenase kinase (PDC-PDK) interaction as a regulatory switch which is primarily responsible for changing substrates in energy metabolism from glucose to fatty acids and back. Baseline gene expression of the subcutaneous adipose tissue, along with a publicly available obesity data set, are visualised on the cellular network of metabolic flexibility to highlight the genes that are expressed and which are differentially affected in obesity.

Conclusion

We have constructed an abstracted network covering glucose and fatty acid oxidation, as well as the PDC-PDK regulatory switch. In addition, we have shown how the network can be used for data visualisation and as a resource for follow-up studies.
  相似文献   

16.
17.
Cancer cells meet their needs for energy and biomass production by consuming high levels of nutrients and rewiring metabolism to support macromolecular biosynthesis. Mitochondrial enzymes play central roles in anabolic growth, and acetylation may provide a key layer of regulation over mitochondrial metabolic pathways. As a major mitochondrial deacetylase, SIRT3 regulates the activity of enzymes to coordinate global shifts in cellular metabolism. SIRT3 promotes the function of the tricarboxylic acid (TCA) cycle and the electron transport chain and reduces oxidative stress. Loss of SIRT3 triggers oxidative damage, reactive oxygen species (ROS)-mediated signaling, and metabolic reprogramming to support proliferation and tumorigenesis. Thus, SIRT3 is an intriguing example of how nutrient-sensitive, post-translational regulation may provide integrated regulation of metabolic pathways to promote metabolic homeostasis in response to diverse nutrient signals.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号