首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar), is a vector of the xylem-inhabitant bacterium Xylella fastidiosa Wells et al., which causes Pierce’s disease of grapevines. Current GWSS control strategies in California, USA include area-wide insecticide applications and mass release of mymarid egg parasitoids, including Gonatocerus ashmeadi Girault. Gas chromatography–mass spectrometry was used to identify (E)-β-ocimene and (E,E)-α-farnesene as volatiles emitted from grapevines on which GWSS had previously fed and oviposited. Attractiveness of female G. ashmeadi to sugar-based formulations containing either (E)-β-ocimene, (E,E)-α-farnesene, or a mixture of both was evaluated using Y-tube olfactometry. When exposed to synthetic formulation containing a mixture of (E)-β-ocimene and (E,E)-α-farnesene vs. blank control, 61% of G. ashmeadi females initially chose the synthetic formulation. After the initial choice for a Y-tube arm, females visited the Y-tube arm connected to the source of formulation more often than it did to the arm connected to a blank control. There was no difference in the female’s time spent in the arm connected to the formulation. When testing formulations containing either (E)-β-ocimene or (E,E)-α-farnesene alone, there was a 1:1 ratio between the proportion of parasitoid’s first choice, visits, and residence time. Results suggest that synthetic formulations containing mixtures of certain plant volatiles may be used to localize GWSS egg parasitoids in vineyard systems. Results are discussed in the context of potential applications in GWSS biological control programs.  相似文献   

2.
Experiments were conducted in North and South America during 2012–2013 to evaluate the use of lure combinations of sex pheromones (PH), host plant volatiles (HPVs) and food baits in traps to capture the oriental fruit moth, Grapholita molesta (Busck), and codling moth, Cydia pomonella (L.), in pome and stone fruit orchards treated with sex pheromones. The combination of the sex pheromone of both species (PH combo lure) significantly increased G. molesta and marginally decreased C. pomonella captures as compared with captures of each species with either of their sex pheromones alone. The addition of a HPV combination lure [(E,Z)‐2,4‐ethyl decadienoate plus (E)‐β‐ocimene] or acetic acid used alone or together did not significantly increase the catch of either species in traps with the PH combo lure. The Ajar trap baited with terpinyl acetate and brown sugar (TAS bait) caught significantly more G. molesta than the delta trap baited with PH combo plus acetic acid in California during 2012. The addition of a PH combo lure to an Ajar trap significantly increased catches of G. molesta compared to the use of the TAS bait or PH combo lure alone in 2013. Female G. molesta were caught in TAS‐baited Ajar traps at similar levels with or without the use of additional lures. Ajar traps baited with the TAS bait alone or with (E)‐β‐ocimene and/or PH combo lures caught significantly fewer C. pomonella than delta traps with sex pheromone alone. Ajar traps with 6.4‐mm screened flaps caught similar numbers of total and female G. molesta as similarly baited open Ajar traps, and with a significant reduction in the catch of non‐targets. Broader testing of HPV and PH combo lures for G. molesta in either delta or screened or open Ajar traps is warranted.  相似文献   

3.
Studies in Oregon, California, Pennsylvania and Italy evaluated the relative performance of the Ajar trap compared with several other traps for the capture of Grapholita molesta (Busck), in pome and stone fruit orchards treated with sex pheromone dispensers for mating disruption. The Ajar is a delta‐shaped trap with a screened jar filled with an aqueous terpinyl acetate plus brown sugar bait solution (TAS) that opens inside the trap and is surrounded by a sticky liner. The TAS‐baited Ajar trap was evaluated with and without the addition of a sex pheromone lure and compared with a delta trap baited with a sex pheromone lure and a bucket trap filled with the TAS bait. Although the Ajar trap had a 90% lower evaporation of the TAS bait than the bucket trap, both of them caught similar numbers in the majority of the field tests of both sexes of G. molesta. The addition of the sex pheromone lure did not increase moth catches by the TAS‐baited Ajar trap. The TAS‐baited Ajar trap caught significantly greater numbers of moths than the sex pheromone‐baited delta trap in 18 of the 20 orchards. Few hymenopterans were caught in orange TAS‐baited Ajar traps, but the catch of flies and other moths relative to the target pest remained high. Flight tunnel and field tests evaluated the effect of several screen designs on the catches of G. molesta and non‐target species. All exclusion devices significantly reduced the catch of larger moths. However, designs that did not reduce the catch of male G. molesta did not reduce the catch of muscid flies. Exclusion devices with openings <7.0 mm significantly reduced the catch of female G. molesta. The addition of (E)‐β‐farnesene, (E)‐β‐ocimene or butyl hexanoate septa lures to TAS‐baited Ajar traps significantly increased total moth catch. The addition of (E)‐β‐ocimene also significantly increased female moth catch.  相似文献   

4.
Studies were conducted in Chile and the United States to compare the attractiveness of various commercial sex pheromone lures and two experimental lures for oriental fruit moth, Grapholita molesta (Busck), in peach orchards treated with or without sex pheromone dispensers. The experimental lures contained the three‐component sex pheromone blend of G. molesta: Z‐8‐dodecenyl acetate, E‐8‐dodecenyl acetate and Z‐8‐dodecenol (Z8‐12:OH), and the sex pheromone of codling moth, Cydia pomonella (L.), (E,E)‐8,10‐dodecadien‐1‐ol, (codlemone). Commercial lures varied in their substrate, initial loading and blend ratio of components. Significant differences in male catches were found among commercial lures in orchards treated with or without sex pheromone dispensers. Experimental lures with the addition of codlemone significantly increased the catches of G. molesta using lures loaded with 0%, 1% or 5% Z8‐12:OH in the G. molesta blend compared with the same ratio of components in just the G. molesta blend. The experimental lures were significantly more attractive than all commercial lures in the untreated orchard. However, moth catch with the experimental lures in the sex pheromone‐treated orchard was only intermediate among all of the lures tested. These findings highlight the need to develop more effective and standardized lures that can be used in trap‐based monitoring programme for this important pest.  相似文献   

5.
The effects of plant-derived chemicals (volatiles) on the attraction of the Spodoptera litura moth to sex pheromones were evaluated using an electroantennogram (EAG). Neuronal responses of male moths to sex pheromone mixtures (SPs) (a 9:1 mixture of synthetic (9Z,11E)-9,11-tetraddecadienyl acetate (Z9E11-14:OAc) and (9Z,12E)-9,12-tetradecadienyl acetate (Z9E12-14:OAc)) and to SPs mixtures with eight plant volatiles (benzaldehyde, (E)-β-caryophyllene, phenylacetaldehyde, 2,6-nonadienal, benzyl alcohol, racemic linalool, longifolene, and (E)-β-ocimene) were also measured. Then, wind tunnels and field trapping bioassays were conducted to determine the influence of plant volatiles on S. litura moth behavioral responses to SPs. The results indicated that benzaldehyde, phenylacetaldehyde, and benzyl alcohol significantly enhanced, and longifolene, (E)-β-caryophyllene, and (E)-β-ocimene had no significant effect on the attractions to SPs, whereas racemic linalool significantly decreased the attraction of male S. litura moths to SPs throughout the olfactory pathway. 2,6-Nonadienal significantly enhanced olfactory responses, but had no significant effect on output behavior. These findings provide foundations in utilization of plant volatiles and sex pheromones to manage the pest and other agricultural pests.  相似文献   

6.
The two congener species Grapholita molesta and Grapholita dimorpha share two major sex pheromone components: cis-8-dodecenyl acetate (Z8-12Ac) and trans-8-dodecenyl acetate (E8-12Ac). In fact, commercial sex pheromone lures composed of only these two major components attract the males of both species. In this study, we aimed to determine the reproductive isolation components of these two species by analyzing the effects of the minor sex pheromone components and host plants. First, different ratios of the two major sex pheromone components were greatly favored by either male species. Sex pheromone gland extracts of G. dimorpha contained a lesser proportion of Z8-12Ac than that of G. molesta. In the three (apple, pear, and peach) orchards investigated in this study, a larger number of G. molesta males were attracted to the 95:5 pheromone mixture (Z8-12Ac and E8-12Ac, respectively), while a larger number of G. dimorpha males were attracted to the 85:15 mixture. Second, there was a significant variation in male attractions in different host plants. G. molesta males were more attracted to the sex pheromone lure in the apple orchards than that in the pear and peach orchards. In contrast, G. dimorpha males were more attracted to the lures in the pear and peach orchards than that in the apple orchard. Third, the minor sex pheromone components were important for reproductive isolation. Among the four minor components tested, addition of (Z)-8-dodecenol (Z8-12OH) to the major sex pheromone components significantly suppressed male attraction in G. dimorpha and slightly elevated male attraction in G. molesta. The discriminating effect of Z8-12OH was further validated using male electroantennogram analysis. These results suggest that reproductive isolation between two congeners can be achieved by variations in the minor sex pheromone components and in the host plants, as well as by changes in the ratio of the two major components.  相似文献   

7.
Control of Grapholita molesta (Busck) (Lepidoptera: Tortricidae), a major pest of stone and pome fruits, is successfully achieved by mating disruption. Under these conditions, tools other than conventional pheromone dispensers are needed for flight monitoring. The objective of the present work was to determine whether plant volatiles synergize male G. molesta attraction to a suboptimal dose of synthetic sex pheromone. The plant blend (referred to as 5VB), a mixture of three green leaf volatiles [(Z)‐3‐hexenyl acetate, (Z)‐3‐hexenol, and (E)‐2‐hexenal] and two aromatics [benzaldehyde (BZA) and benzonitrile (BZN)], was added to the suboptimal pheromone dose (2 ng on filter paper) in log steps (up to 10 000× the pheromone dose) to test synergism of pheromone and plant blends. In addition, the effect of individual plant volatiles on male responses was investigated by adding to the suboptimal pheromone dose each of the four‐compound plant‐volatile blends, resulting from eliminating one volatile from the 5VB at a time, or each plant volatile alone. Flight behaviour and the time to reach the source were recorded. The 5VB alone was not attractive to G. molesta males, but at a ratio of 1:1 000 (Ph:5VB) or higher, the attractiveness of the suboptimal pheromone dose increased, to a level similar to that of the optimal pheromone dose (10 ng). All tested plant volatiles, except BZA, synergized the response to the pheromone when added individually, but only (Z)‐3‐hexenol and BZN did so to a level not significantly different from the Ph:5VB blend. Aromatics had a stronger effect than green leaf volatiles (GLVs), because their removal, but not the removal of GLVs, decreased landing responses. The addition of the 5VB decreased significantly the time males needed to reach the odour source. The observed enhanced male attraction to mixtures of pheromone and plant volatiles will facilitate the development of lures for G. molesta adult flight monitoring.  相似文献   

8.
Multi-substrate terpene synthases (TPSs) are distinct from typical TPSs that react with a single substrate. Although in vitro activity of few multi-substrate TPSs have been reported, in vivo characterization has not been well investigated for most of them. Here, a new TPS from Cananga odorata, CoTPS5, belonging to TPS-f subfamily was functionally characterized in vitro as well as in vivo. CoTPS5 reacted with multiple prenyl-pyrophosphate substrates of various chain lengths as a multi-substrate TPS. It catalyzed the formation of (E)-β-ocimene, (E,E)-α-farnesene and α-springene from geranyl pyrophosphate, (E,E)-farnesyl pyrophosphate and geranylgeranyl pyrophosphate, respectively. Upon transient expression in Nicotiana benthamiana, CoTPS5 localized to cytosol and produced only (E,E)-α-farnesene. However, expression of plastid-targeted CoTPS5 in N. benthamiana resulted in biosynthesis of all three compounds, (E)-β-ocimene, (E,E)-α-farnesene and α-springene. Similarly, transgenic Arabidopsis plants overexpressing plastid-targeted CoTPS5 showed stable and sustainable production of (E)-β-ocimene, (E,E)-α-farnesene and α-springene. Moreover, their production did not affect the growth and development of transgenic Arabidopsis plants. Our results demonstrate that redirecting multi-substrate TPS to a different intracellular compartment could be an effective way to prove in vivo activity of multi-substrate TPSs and thereby allowing for the production of multiple terpenoids simultaneously in plants.  相似文献   

9.
Two Grapholita species (G. molesta and G. dimorpha) cause serious losses in apple production by means of direct fruit damage and destruction. These two congeners occurred at similar seasons in the same orchards. Furthermore, the two species occurred in similar population sizes in apple orchards, though G. molesta occurred much more in total occurrence density than did G. dimorpha in a pear orchard. The two species share two major sex pheromone components, (Z)-8-dodecenyl acetate (Z8-12:Ac) and (E)-8-dodecenyl acetate (E8-12:Ac), but differ with regard to the relative mixture ratio necessary to create conditions of maximal attraction. To develop a simultaneous mating disruption (SMD), a mass ratio of 95:5 of Z8-12:Ac and E8-12:Ac was selected due to its high cross-calling activity and subsequent high mating disruption against both species. When the mixture was applied to orchards, it resulted in significant mating disruption against both species. However, mating disruption efficacy was slightly higher in G. dimorpha than in G. molesta. Application dose and dispenser type affected efficacy duration of SMD. In addition, the high density occurrence of G. molesta significantly reduced the SMD efficacy. Using a wax-type of dispenser, an application of SMD in 100?g per hectare dispersed in early spring recorded >90% mating disruption efficacy through the entire growing season against both Grapholita species.  相似文献   

10.
In moths, sex pheromone components are detected by pheromone-specific olfactory receptor neurons (ph-ORNs) housed in sensilla trichodea in the male antennae. In Grapholita molesta, ph-ORNs are highly sensitive and specific to the individual sex pheromone components, and thus help in the detection and discrimination of the unique conspecific pheromone blend. Plant odors interspersed with a sub-optimal pheromone dose are reported to increase male moth attraction. To determine if the behavioral synergism of pheromone and plant odors starts at the ph-ORN level, single sensillum recordings were performed on Z8-12:Ac and E8-12:Ac ph-ORNs (Z-ORNs and E-ORNs, respectively) stimulated with pheromone–plant volatile mixtures. First, biologically meaningful plant-volatile doses were determined by recording the response of plant-specific ORNs housed in sensilla auricillica and trichodea to several plant odorants. This exploration provided a first glance at plant ORNs in this species. Then, using these plant volatile doses, we found that the spontaneous activity of ph-ORNs was not affected by the stimulation with plant volatiles, but that a binary mixture of sex pheromone and plant odorants resulted in a small (about 15%), dose-independent, but statistically significant, reduction in the spike frequency of Z-ORNs with respect to stimulation with Z8-12:Ac alone. The response of E-ORNs to a combination of E8-12:Ac and plant volatiles was not different from E8-12:Ac alone. We argue that the small inhibition of Z-ORNs caused by physiologically realistic plant volatile doses is probably not fully responsible for the observed behavioral synergism of pheromone and plant odors.  相似文献   

11.
《Journal of Asia》2022,25(1):101859
Grapholita molesta (Busck) (the oriental fruit moth; OFM) and Conogethes punctiferalis (Guenée) are both fruit and stem borers with overlapping habitats, occurrences, and outbreak cycles. These two species are in different families and they have completely different sex pheromone components. Here, the effects of the sex pheromone components of C. punctiferalis, (E)-10-hexadecenal (E10-16:Ald) and (Z)-10-hexadecenal (Z10-16:Ald) and their mixture, were evaluated on the sexual communication of OFM by examining electrophysiological (EAG) and behavioral responses. We found that a considerably large amount of E10-16:Ald or Z10-16:Ald and a tiny amount of OFM pheromone elicited comparable EAG responses in OFM males, indicating the low antennal olfactory sensitivity of OFM males to the heterospecific pheromone compounds. In two different peach orchard parcels, captures of OFM by their pheromone lures baited in delta traps were increased by at least 1.5 times when OFM pheromone lures were combined with lures that contained 1000 μg of either E10-16:Ald, Z10-16:Ald or their mixture. In two other pear orchard parcels, both E10-16:Ald and Z10-16:Ald increased captures of OFM in Unitraps in a dose-dependent manner with more than a four-fold increase. Therefore, the enhanced attractiveness of OFM lures by the two interspecific pheromones suggests their potential application to improve mass trapping, population monitoring and mating disruption of OFM.  相似文献   

12.
Abstract

The oriental fruit moth (OFM) is one of the most serious pests of commercial fruit orchards worldwide. Newly planted peach trees in particular, can be very attractive for mated OFM females for oviposition. Samples of airborne host plant volatiles from intact young peach shoot tips and old leaves of the same potted plants were collected and analyzed with a gas chromatograph-mass spectrometer. Chemicals present in young shoot tips, but not in old leaves, were used for field trials. Moth capture by traps with the synthetic chemicals was compared to that of the standard terpinyl acetate (TA) food trap. The TA food trap caught OFM males and mated females, but tested synthetic chemicals trapped only OFM males. We observed that the mixture of (Z)-3-hexenyl acetate: (E)-β-ocimene: (E)-β-farnesene in proportion 1:2:2 attracted OFM males. Further, 1 mg of (E)-β-ocimene, and that of (E)-β-farnesene also attracted OFM males.  相似文献   

13.
A fusion of information technology (IT) and sex pheromone monitoring provides a remote sensing IT-pheromone trap to monitor Oriental fruit moth, Grapholita molesta, populations in apple orchards. Once a male of G. molesta is attracted to its sex pheromone lure in the trap, an infrared sensor installed at the funnel-shaped orifice generates an electric signal. The signal is processed in a central processor and then transferred to an internet site via a code division multiple access protocol. The signal also contains information about when each male is caught. Daily trapping information from different localities is archived in a website. The accuracy of IT-pheromone traps in detecting male catches was shown by a high correlation (r = 0.956) between the generated IT signals and actual numbers of males caught in the trap in apple orchards. Using this IT-pheromone trap, G. molesta in apple orchards was monitored for one year. These data were compared with monitoring data obtained from a conventional wing type-based sticky trap containing the identical sex pheromone lure. Both showed four characteristic adult peaks from April to September and were significantly correlated (r = 0.695). IT-pheromone traps also gave real-time signals of male catches in the field. These real-time signals of male catches showed a characteristic diel attraction rhythm from 4 pm to midnight. The diel rhythm of the male response to the sex pheromone started earlier in the evening in the spring season compared to mid and late seasons. This study provides a novel sex pheromone trap for G. molesta to monitor its population in field conditions in real-time without visiting or counting. The field monitoring data can be accessed any time through a designated internet website.  相似文献   

14.
Male and female moth catches of Grapholita molesta (Busck) in traps were evaluated in stone and pome fruit orchards untreated or treated with sex pheromones for mating disruption in Uruguay, Argentina, Chile, USA, and Italy from 2015 to 2017. Trials evaluated various blends loaded into either membrane cup lures or septa. Membrane lures were loaded with terpinyl acetate (TA), acetic acid (AA) and (Z)‐3‐hexenyl acetate alone or in combinations. Two septa lures were loaded with either the three‐component sex pheromone blend for G. molesta alone or in combination with codlemone (2‐PH), the sex pheromone of Cydia pomonella (L). A third septum lure included the combination sex pheromone blend plus pear ester, (E,Z)‐2,4‐ethyl decadienoate (2‐PH/PE), and a fourth septum was loaded with only β‐ocimene. Results were consistent across geographical areas showing that the addition of β‐ocimene or (Z)‐3‐hexenyl acetate did not increase moth catches. The addition of pear ester to the sex pheromone lure marginally increased moth catches. The use of TA and AA together significantly increased moth catches compared with the use of only one of the two components. Traps with the TA/AA lure outperformed the Ajar trap baited with a liquid TA plus sugar bait. The emission rate of AA was not a significant factor affecting the performance of the TA/AA lure. The addition of TA/AA significantly increased moth catches when combined with the 2‐PH lure. The TA/AA lure also allowed traps to catch both sexes. Catch of C. pomonella with the 2‐PH lure was comparable to the use of codlemone; however, moth catch was significantly reduced with the 2‐PH/PE lure. Optimization of these complex lures can likely further improve managers’ ability to monitor G. molesta and help to develop multispecies tortricid lures for use in individual traps.  相似文献   

15.
BACKGROUND: In honey bee colony, the brood is able to manipulate and chemically control the workers in order to sustain their own development. A brood ester pheromone produced primarily by old larvae (4 and 5 days old larvae) was first identified as acting as a contact pheromone with specific effects on nurses in the colony. More recently a new volatile brood pheromone has been identified: E-β-ocimene, which partially inhibits ovary development in workers. METHODOLOGY AND PRINCIPAL FINDING: Our analysis of E-β-ocimene production revealed that young brood (newly hatched to 3 days old) produce the highest quantity of E-β-ocimene relative to their body weight. By testing the potential action of this molecule as a non-specific larval signal, due to its high volatility in the colony, we demonstrated that in the presence of E-β-ocimene nest workers start to forage earlier in life, as seen in the presence of real brood. CONCLUSIONS/SIGNIFICANCE: In this way, young larvae are able to assign precedence to the task of foraging by workers in order to increase food stores for their own development. Thus, in the complexity of honey bee chemical communication, E-β-ocimene, a pheromone of young larvae, provides the brood with the means to express their nutritional needs to the workers.  相似文献   

16.
《Journal of Asia》2019,22(3):645-654
Mating disruption by using sex pheromone is an ecofriendly alternative way to control insect pests. To be effective, large amounts of sex pheromone are needed, leading to a relatively high production cost. To reduce the cost for chemical synthesis of sex pheromone, yeast engineering technology has been devised. This study used a baker's yeast, Saccharomyces cerevisiae, to express genes associated with sex pheromone biosynthesis of the Oriental fruit moth, Grapholita molesta. Compared to other fatty acid biosynthetic pathways, two steps that are unique to pheromone gland of G. molesta are proposed: desaturation at even number catalyzed by desaturase (Gm-DES) and terminal reduction catalyzed by fatty acyl reductase (Gm-FAR). Gm-DES and Gm-FAR were cloned into a yeast expression vector, pYES2.1. They were used to transform S. cerevisiae by a double transfection method. The transformed yeast was induced with 2% galactose to over-express these two exogenous genes. Their expression was confirmed by RT-PCR and western blotting. To facilitate pheromone production, transformed yeasts were supplied with myristic acid during over-expression. Resulting fatty acid composition was analyzed by GC-MS after fatty acid methyl ester derivatization. Control yeast produced mostly saturated fatty acids. However, a single gene (Gm-DES)-transformed yeast produced unsaturated fatty acids at 9 such as Z9-tetradecenoic acid (Z9-14:1), palmitoleic acid (Z9-16:1), and oleic acid (Z9-18:1) in addition to saturated fatty acids. The double-transformed yeast produced an additional component, alcohol form of oleic acid (Z9-18:OH). These results suggest that Gm-DES can catalyze desaturation of fatty acids at 9 and Gm-FAR can reduce terminal carboxylic acid into alcohol.  相似文献   

17.
The exotic wood-boring pest, emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), has been threatening North American ash (Fraxinus spp.) resources, this being recognized since its first detection in Michigan, USA and Ontario, Canada in 2002. Ash trees are killed by larval feeding in the cambial region, which results in disruption of photosynthate and nutrient translocation. In this study, changes in volatile and non-volatile foliar phytochemicals of potted 2-yr-old black ash, Fraxinus nigra Marshall, seedlings were observed in response to EAB larval feeding in the main stem. EAB larval feeding affected levels of six compounds [hexanal, (E)-2-hexenal, (Z)-3-hexenyl acetate, (E)-β-ocimene, methyl salicylate, and (Z,E)-α-farnesene] with patterns of interaction depending upon compounds of interest and time of observation. Increased methyl salicylate emission suggests similarity in responses induced by EAB larval feeding and other phloem-feeding herbivores. Overall, EAB larval feeding suppressed (Z)-3-hexenyl acetate emission, elevated (E)-β-ocimene emission in the first 30 days, but emissions leveled off thereafter, and generally increased the emission of (Z,E)-α-farnesene. Levels of carbohydrates and phenolics increased overall, while levels of proteins and most amino acids decreased in response to larval feeding. Twenty-three amino acids were consistently detected in the foliage of black ash. The three most abundant amino acids were aspartic acid, glutamic acid, glutamine, while the four least abundant were α-aminobutyric acid, β-aminoisobutyric acid, methionine, and sarcosine. Most (16) foliar free amino acids and 6 of the 9 detected essential amino acids decreased with EAB larval feeding. The ecological consequences of these dynamic phytochemical changes on herbivores harbored by ash trees and potential natural enemies of these herbivores are discussed.  相似文献   

18.
The effects of prior pheromonal experience upon the pheromone- mediated upwind flight response was examined in the oriental fruit moth, Grapholita molesta(Busck) (Lepidoptera: Tortricidae). Adult male G. molestawere subjected to a parallel series of staggered and repeated pheromonal exposures in a sustained-flight wind tunnel. Levels of response to pheromone in male G. molestasignificantly decreased in a (a) rectilinear function with increased ages of individuals, (b) logarithmic function of successive trials, and (c) steeper logarithmic function of successive trials with increased dosage of sex pheromone. The baseline levels of responding were not affected by either the (a) dosage of sex pheromone, (b) posteclosion ages of individuals for their initial exposures once the main effect of age itself was estimated, (c) elapsed time in hours between trials, or (d) discrete days of testing as integral intervals, disregarding hours within days.  相似文献   

19.
In response to injury, plants produce volatile organic compounds (VOCs) that usually differ depending on the type of damage they have suffered (e.g., mechanical damage, herbivory, and oviposition). The objectives of this study were to identify and compare the bouquet of volatiles emitted by passion vine plants (Passiflora edulis) after injury caused by mechanical damage (MD), herbivory (HB), and oviposition (OV) by the lepidopteran, Heliconius erato phyllis. Following injury, extracts of plant emissions were collected from each treatment every 24 h for three days and were analyzed by GC and GC/MS. Results show that plants emitted 12 volatiles before and after damage, namely terpenoids, ketones, and aldehydes. Although no significant differences were detected between the three treatments individually, if the entire bouquet of volatiles is analyzed, samples collected at 24 h were different from samples collected at 48 and 72 h. However, terpenoid emission increased significantly in HB plants after 24 h. HB plants emitted approximately 6300, 50, 46, 11, 6, and 3.6 times more (3E,7E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), (E)-β-ocimene, (Z)-β-farnesene, (E)-β-caryophyllene, and farnesane, respectively, compared to control plants. OV plants displayed a peak of emission of (E)-β-ocimene after 72 h, which distinguished them from HB plants. MD plants showed a general increase of VOCs versus undamaged control plants. Furthermore, it has been suggested that (E)-β-ocimene may be sequestered by larvae of H. erato phyllis as a component of the odoriferous bouquet of the abdominal scent glands present in adult males, which play a role in sexual communication.  相似文献   

20.
This study was conducted to investigate the sex pheromone composition of Palpita (=Diaphania) indica (Saunders) (Lepidoptera: Pyralidae) in Korea. Two sex pheromone components, E11-16:Al and E,E-10,12-16:Al, were identified by GC and GC-EAD analysis of sex pheromone gland extracts. The mean ratios of the two components, E11-16:Al and E,E-10,12-16:Al, were about 6.5:3.5 and 7.5:2.5 in gland extracts and in SPME collection, respectively. In field bioassays, maximum attraction occurred in traps baited with a 7:3 ratio of E11-16:Al and E,E-10,12-16:Al. The head extracts of P. indica stimulated the sex pheromone production of P. indica, as well as Hez-PBAN and PssPT, indicating that a PBAN-like substance exists in the head extracts of P. indica. Whole-mount immunocytochemistry showed that three groups of neurosecretory cells showed PBAN-like immunoreactivity in the SEG of P. indica. The PBAN-like immunoreactivity connected to the Corpora Cardiaca, a neurohemal organ. Also, PBAN-like immunoreactivity was found in the brain and in the thoracic and third/fourth abdominal ganglia. The addition of sex pheromone components of Peridroma saucia to the sex pheromone of P. indica greatly improved the attraction of P. indica males. The mixing of the sex pheromone components of S. exigua did not significantly increase the catches of P. indica, while the sex pheromone of H. armigera completely inhibited the attractiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号