首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two experiments were conducted to examine the effects of semen fractionation and dilution ratio on motility parameters of stallion spermatozoa. In Experiment 1, three ejaculates from each of three stallions were divided into sperm-rich (SR) and sperm-poor (SP) fractions to determine the difference in sperm concentration. Mean sperm concentration in SR fractions (349.5 x 10(6)/ml) was greater (P < 0.001) than that of SP fractions (96.9 x 10(6)/ml). In Experiment 2, three ejaculates from each of two stallions were divided into SR and SP fractions. Fifty percent of the original volume of SR fractions was combined with 50% of the original volume of SP fractions for each ejaculate to represent total ejaculates. SR and total ejaculates were diluted with skim milk-glucose semen extender as follows: 1) no dilution, or dilution to 2) 100 x 10(6)sperm/ml, 3) 50 x 10(6)sperm/ml, or 4) 25 x 10(6)sperm/ml. Semen samples were evaluated at 0.5, 3, 6, 12, and 24 h postejaculation (25 degrees C storage temperature) for percentages of total spermatozoal motility (TSM) and progressive spermatozoal motility (PSM). Mean TSM was greater (P < 0.05) in SR ejaculates than total ejaculates at 12 and 24 h postejaculation. Mean TSM of undiluted semen was lower (P < 0.05) than other dilution ratios over all periods. Mean TSM was greater (P < 0.05) at a 25 x 10(6)sperm/ml dilution ratio than a 50 x 10(6)sperm/ml dilution ratio at 12 and 24 h postejaculation, and greater (P < 0.05) than a 100 x 10(6)sperm/ml dilution ratio from 3 to 24 h postejaculation. Similar patterns were found for PSM. Collection of SR ejaculates and dilution to 25 x 10(6)sperm/ml improved longevity of spermatozoal motility.  相似文献   

2.
Uterine secretion was collected from five normal mares during estrus by the use of a tampon. In subsequent estrus cycles, mares were inseminated with 1 x 10(9) spermatozoa from a stallion of known fertility, and uterine secretion was collected randomly at 6, 12, and 24 hours after insemination. All mares had negative endometrial cytology before insemination. At the time of uterine secretion sampling, semen was collected from two stallions and extended with Kenney's extender to a concentration of 50 x 10(6) spermatozoa/mL. Extended semen was diluted 2:1 with uterine secretion; semen extender; and centrifuged uterine secretion (noncellular). Samples were kept at room temperature and sperm motion characteristics (corrected motility (CMOT), progressively motile spermatozoa (PMS), and mean path velocity (MPV) were evaluated using a computer-assisted semen analyzer every 40 minutes for a total of 4 hours. Sperm motion characteristics of spermatozoa were significantly better when incubated in semen extender compared to uterine secretion (P < 0.05). The CMOT and PMS were significantly better in uterine secretion collected before, compared to after AI with the lowest values observed in samples collected at 12 hours after breeding (P < 0.05). Sperm motion characteristics of spermatozoa incubated in centrifuged uterine secretion was only slightly suppressed compared to spermatozoa incubated in semen extender, suggesting that the altered motion characteristics were mostly due to the presence of polymorphonuclear neutrophils (PMNs) in the samples. It was concluded from this study that spermatozoa can survive in inflamed uterine secretion, but that sperm motion characteristics in vitro are altered.  相似文献   

3.
An insemination trial was conducted to evaluate the fertility of extended slow-cooled stallion spermatozoa stored for 70 h or 80 h at 5 to 7 degrees C before insemination. Then, 1 or 2 of the first sperm-rich fractions were collected with an open-ended vagina from 4 stallions. Semen from each stallion was diluted within 2 to 3 min after collection with a modified Kenney skim milk extender (6). The proportion of raw semen in the insemination doses was 24+/-6%. One insemination dose (25 to 50 ml) consisted of approximately 2 billion total spermatozoa. In the trial, palpation per rectum and ultrasonography of 34 mares (40 cycles) were performed every 12 h. The pregnancy rate per cycle (30-d) with semen stored for 70 h before insemination was 77% (17 cycles) and, with semen stored for 80 h, 57% (23 cycles). The difference was not statistically significant. The combined pregnancy rate per cycle was 65%. These results indicate that stallion semen can retain its fertilizing capacity for up to 80 h when collected and diluted using this procedure and when the inseminations are done less than 12 h after ovulation.  相似文献   

4.
H. Bader 《Zoo biology》1983,2(4):307-314
Electroejaculation was performed in 3 chimpanzees, 1 pygmy chimpanzee, and 2 gorillas with an instrument that delivers a modified sine wave current with a frequency of 24 Hz. The current stimuli were applied by a rectal probe with longitudinal electrodes. The electrical parameters varied from 6 to 12 V and from 30 to 40 mA for response of erection and lay between 8 and 18 V and between 40 and 145 mA during semen emission. Eleven chimpanzee semen samples showed the following data (x ± SD): total volume 1.9 ± 1.3 ml, volume of the liquid fraction 0.3 ± 0.2 ml, spermatozoa per ejaculate 743 ± 376 × 106, sperm motility 52.7 ± 9.6%, morphologically abnormal spermatozoa 12.2 ± 7.5%. From an adult gorilla, three semen samples were collected, in each case without spermatozoa. The electrostimulation of a 6-year-old gorilla led to an erection, but not to semen emission. Three female chimpanzees were inseminated with fresh or frozen semen, each of them within three different estrous cycles. None of these inseminations led to a pregnancy.  相似文献   

5.
It was the aim of the present study to determine physiological values for different semen parameters in an endangered draught horse breed, the Austrian Noriker. Because small population size is often believed to cause a decrease in fertility and/or semen quality through inbreeding and a reduction in genetic variation, the general genomic heterogeneity of the breed was estimated on the basis of microsatellite variation and correlated to semen parameters. Semen could be collected from 104 of 139 stallions with semen collection being more often successful in younger stallions. Mean volume of ejaculates was 90.8+/-55.1 ml, density 243+/-114 x 10(6)ml(-1), total sperm count 21.0+/-23.7 x 10(9), percentage of morphologically normal spermatozoa 38+/-18% and total motility 50+/-23%. Total sperm count and semen motility were significantly affected by age. Blood samples of 134 stallions were analysed for 12 microsatellite DNA markers. Genotypes of 110 stallions with at least 11 successfully typed markers were used for calculation of heterozygosity. A total of 82 alleles was identified with a mean of 6.8 alleles per marker. Heterozygosity varied between 35 and 76% for the different markers, mean heterozygosity was calculated to 63%. No correlation between heterozygosity and semen parameters was found.  相似文献   

6.
The fertility of frozen-thawed and fresh semen from each of three stallions was compared in an experiment with a randomized block design using 128 mares. Semen was collected every third day, extended in lactose-EDTA-egg yolk extender at a concentration of 500 × 106 progressively motile sperm per 1.0 ml, and frozen in individual-dose, 1.0-ml straws (1.9 mm × 267 mm). The same stallions were collected daily for inseminations with fresh semen. For each insemination dose with fresh semen, 300 × 106 progressively motile sperm were added to 10 ml of heated skim milk extender. Mares were inseminated daily from the second day of estrus through the end of estrus. Of 52 ejaculates processed and frozen, 38% were discarded because < 35% of the sperm were progressively motile after thawing. Based on rectal palpations on day 50 post-ovulation, pregnancy rates for inseminations during one estrus to semen from the three stallions were 17, 33 and 35% for frozen-thawed semen and 60, 62 and 64% for fresh semen. Pregnancy rates with frozen semen from two of the three stallions were 54% of the rates attained with fresh semen.  相似文献   

7.
The effects of extender and storage at 20 degrees C on equine spermatozoa were evaluated in two experiments using embryo recovery as the end point. In both experiments, inseminations were every other day, starting on Day 2 or 3 of estrus or after a 35-mm follicle was detected, with 250 x 10(6) progressively motile cells (based on initial evaluation). In Experiment 1, semen from two stallions was used to compare the motility and fertility of spermatozoa maintained in a) heated skim milk extender at 37 degrees C with insemination in <1 h; b) E-Z Mixin extender at 37 degrees C with insemination in <1 h; and c) E-Z Mixin extender at 37 degrees C with cooling to 20 degrees C and insemination after storage for 12 h at 20 degrees C. The percentage of motile spermatozoa was 34% after 12 h compared to 55% at 0 h (P < 0.05). However, the percentage of mares from which an embryo was recovered 6.5 d after ovulation was 62, 56, and 50% for Treatments A, B, and C (P > 0.05). In Experiment 2, semen from three stallions was used to compare the motility and fertility of spermatozoa in a) E-Z Mixin extender at 37 degrees C with insemination in <1 h or b) E-Z Mixin extender at 37 degrees C with cooling to 20 degrees C and insemination after storage for 24 h at 20 degrees C. The percentage of motile spermatozoa was 17% after 24 h compared to 54% at 0 h (P < 0.05). There was no difference between treatments (P > 0.05) in the percentage of mares from which an embryo was recovered 6.0 d after ovulation (68 vs 62%) or among stallions. Thus, stallion semen extended in E-Z Mixin was held at 20 degrees C for 24 h without a marked decline in fertility.  相似文献   

8.
The objective of the present study was to evaluate the effect of sperm dilution (one part semen:one part extender or at 200 x 10(6) spermatozoa/mL) using a coconut water extender on the post-thaw sperm quality. Twelve ejaculates were collected from six dogs. Semen was divided into two aliquots, one for dilution one part semen:one part extender (group 1) and another for a concentration of 200 x 10(6) spermatozoa/mL (group 2). Semen was initially extended at 37 degrees C at a proportion of one part semen:half part extender (1:1/2) for group 1 (A-fraction). For group 2, the volume for a concentration of 200 x 10(6) spermatozoa/mL was calculated and a half of this volume was used for the initial dilution (A-fraction, 37 degrees C). Coconut water extender containing 20% egg yolk was used for this initial dilution in both groups. After dilution, the semen was cooled for 40 min in a thermal box (15 degrees C) and for 30 min in a refrigerator. The other half of the extender (B-fraction) containing egg yolk and glycerol (12%) was added to semen in both groups. Subsequently, the final concentration of glycerol in the extender was 6%. Ejaculates were frozen in 0.25 mL straws 5 cm above the surface of liquid nitrogen and stored at -196 degrees C. After 1 week, straws were thawed at 37 degrees C for 1 min and the microscopic criteria were evaluated. The dilution method had no influence on sperm motility, vigor and normal spermatozoa (71.4 compared with 67.7%). There was no effect of dog, ejaculate within male on post-thaw semen quality. Moreover, there was not a male x treatment interaction. Both treatments were efficient in preserving sperm quality.  相似文献   

9.
In the last decades, a significant decrease in hare population has been observed; for this reason, the aim of the study was to check if hare semen could be preserved in liquid nitrogen, with an extender used for rabbit semen. The results should provide a basis for creating a gene bank of the species. Ten ejaculates (volume above 0.4 ml, percentage of motile spermatozoa above 75%, spermatozoa concentration above 250 x 10(6) ml), obtained with electroejaculation method from four males, were frozen in an extender of the following composition: Tris (3.028 g), citric acid (1.675 g), glucose (1.25 g), dimethylsulphoxide (DMSO) (4.5%, v/v), egg yolk (17%, v/v) and distilled water to 100.00 ml. The motility of post-thawing spermatozoa was 40.50+/-7.97%, percentage of spermatozoa with normal acrosomes 76.10+/-3.69% and percentage of live spermatozoa 35.05+/-4.21%. Based on the properties of freezing-thawing semen, the hare semen can be successfully preserved in extender used for rabbit semen.  相似文献   

10.
The aim of this study was to determine if dead spermatozoa reduced motility or membrane integrity of live spermatozoa in fresh and cooled-stored equine semen. Three ejaculates from each of three stallions were centrifuged and virtually all seminal plasma was removed. Spermatozoa were resuspended to 25 x 10(6) spermatozoa/ml with EZ-Mixin CST extender and 10% autologous seminal plasma, then divided into aliquots to which 0 (control), 10, 25, 50, or 75% (v/v) dead spermatozoa were added. Dead spermatozoa preparations contained 25 x 10(6) spermatozoa/ml and 10% seminal plasma from pooled ejaculates of the three stallions, in EZ-Mixin CST extender. Spermatozoa were killed in the pooled ejaculates by repeated freezing and thawing, then stored at -20 degrees C until warmed to 37 degrees C and mixed with aliquots of fresh spermatozoa to be cooled and stored in an Equitainer for 24h. Motion characteristics (% total motility (MOT), % progressive motility (PMOT), and mean curvilinear velocity (VCL)) for fresh and 24h cooled samples were determined using a computerized spermatozoal motion analyzer. The presence of up to 75% dead spermatozoa did not adversely affect MOT or PMOT of live spermatozoa in either fresh or cooled-stored semen. However, VCL and the percentage of membrane-intact spermatozoa were reduced compared to control samples when 75% (v/v) dead spermatozoa were added. Membrane integrity, as assessed by staining with carboxyfluoresein diacetate-propidium iodide, was highly correlated (r>0.8; P<0.001) with MOT and PMOT in both fresh and cooled-stored semen samples. Results of this study have application to the processing of both cooled and frozen equine semen.  相似文献   

11.
In this study, we tested the hypothesis that insemination of mares with twice the recommended dose of cooled semen (2 x 10(9) spermatozoa) would result in higher pregnancy rates than insemination with a single dose (1 x 10(9) spermatozoa) or with 1 x 10(9) spermatozoa on each of 2 consecutive days. A total of 83 cycles from 61 mares was used. Mares were randomly assigned to 1 of 3 treatment groups when a 40-mm follicle was detected by palpation and ultrasonography. Mares in Group 1 were inseminated with 1 x 10(9) progressively motile spermatozoa that had been cooled in a passive cooling unit to 5 degrees C and stored for 24 h. A second aliquot of semen from the same collection was stored for an additional 24 h and inseminated at 48 h after collection. Mares in Group 2 were inseminated once with 1 x 10(9) progressively motile spermatozoa that had been cooled to 5 degrees C and stored for 24 h. Group 3 mares were inseminated once with 2 x 10(9) progressively motile spermatozoa that had been cooled to 5 degrees C and stored for 24 h. All mares were given 2500 IU i.v. hCG at the first insemination. Pregnancy was determined by ultrasonography 12, 14 and 16 d after ovulation. On Day 16, mares were administered i.m. 10 mg of PGF2 alpha and, upon returning to estrus, were randomly reassigned to a group for repeated treatment. Semen was collected from one of 3 stallions every 3 d; mares with a 40-mm ovarian follicle were inseminated with semen from the stallion collected on the preceding day. Semen was allocated into doses containing 1 x 10(9) progressively motile spermatozoa, diluted with dried skim milk-glucose extender to a concentration of 25 x 10(6) motile spermatozoa/ml (total volume 40 ml), placed in a passive cooling unit and cooled to 5 degrees C for 24 or 48 h. Response was measured by number of mares showing pregnancy. Data were analyzed by Chi square. Mares inseminated twice with 1 x 10(9) progressively motile spermatozoa on each of two consecutive days had a higher pregnancy rate (16/25, 64%; P < 0.05) than mares inseminated once with 1 x 10(9) progressively motile spermatozoa (9/29, 31%) or those inseminated once with 2 x 10(9) progressively motile spermatozoa (12/29, 41%). Pregnancy rates did not differ significantly (P > 0.10) among stallions (69, 34 and 32%). Interval from last insemination to ovulation was 0.9, 2.0 and 2.0 d for mares in Groups 1, 2 and 3, respectively. Based on these results, the optimal insemination regimen is a dose of 1 x 10(9) progressively motile spermatozoa given on two consecutive days. However, a shorter interval (< or = 24 h rather than > 0.9 d) between insemination and ovulation may affect pregnancy rates, and needs to be investigated.  相似文献   

12.
The sperm-rich fraction of stallion semen was collected in an AV and, after dilution in an extender, was cooled to 2--5 degrees C before placing in aluminium tubes for freezing in liquid nitrogen for several hours or months. The spermatozoa in about 200 ejaculates from 36 stallions were examined to compare their survival time, motility and velocity before and after thawing. According to the various indices used, 20% of stallions produced spermatozoa which were unaffected, 60% partly but not seriously affected and the remainder completely inactivated. The velocity of spermatozoa decreased from 51.4 micrometers/sec in the fresh semen to 36.8 micrometers/sec in the thawed semen. The fertilizing capacity of the spermatozoa of frozen--thawed semen of 5 stallions was examined in 14 mares. In all, 65 inseminations were made and the blastocysts were recovered non-surgically from the uterus 7--9 days after ovulation. A 20% drop in blastocyst recovery occurred as the result of freezing and thawing, when the same mares were used for insemination of raw and frozen--thawed semen. The capacity to freeze sucessfully proved to be a specific characteristic of certain stallions. Degenerate blastocysts were not recovered but those resulting from artificial insemination of frozen semen were much smaller in diameter than those following insemination of raw semen.  相似文献   

13.
The standard procedure for assessing the breeding potential of a stallion includes the parameter total number of spermatozoa classified as morphologically normal. This study investigated sperm morphology of fresh semen in randomly chosen Estonian (E, n = 8) and Tori (T, n = 7) breed stallions with proven fertility. Two ejaculates were examined from each stallion. An aliquot from each ejaculate was fixed in 1 mL formol-saline immediately after collection and examined with phase-contrast microscope at a magnification 1000× for all types of morphological abnormalities. Furthermore smears were prepared and stained according to Williams (carbolfuchsin-eosin) for a more detailed examination of the sperm heads with light microscope at a magnification 1000×. Analysis of variance was applied to the data, and results are presented as LSmeans (± SE). One T stallion that had a disturbance in the spermatogenesis and one 22-year-old E stallion were not included in the analyses. The T stallions had on average 57.5 ± 4.1% and the E-stallions 74.4 ± 3.8% morphologically normal spermatozoa (p = 0.012). In 4 of 7 T stallions and 7 of 8 E stallions both ejaculates had >50% morphologically normal spermatozoa. There was a significant difference between breeds in mean percentage of proximal droplets (17.3 ± 2.7% and 2.9 ± 2.5% for T and E stallions, respectively; p = 0.003).  相似文献   

14.
Varicocele is one of the main and surgically repairable causes of male infertility, which arises from dilatation and torsion of the testicular veins in the plexus pampiniformis. In this study, we examined semen samples from 40 patients diagnosed with varicocele between the ages of 15 and 30 years, according to WHO criteria (pre-operatively, and at 3, 6, and 12 months post-operatively). The mean spermatozoa concentration was found to be 45.25?±?34.83 million/ml pre-operatively, while the mean post-operative concentration was 48.85?±?35.73 million/ml at three months, 51.72?±?32.82 million/ml at six months, and 49.63?±?28.05 million/ml at 12 months (P?>?0.05). The mean rate of A?+?B motile spermatozoa was 35.5?±?14.71% pre-operatively, 42.65?±?16.80% at three months, 43?±?13.52%at six months and 44?±?14.76 percent at 12 months post-operatively (P?<?0.05). The mean Kruger morphology score was 3.15?±?3.0% pre-operatively, and 3.20?±?2.83% at three months, 2.97?±?2.61%at six months and 3.27?±?2.50%at 12 months post-operatively (P?>?0.05). The nucleus, acrosomal cap, mitochondrial structure and microtubules of the tail of the spermatozoa were examined under electron microscopy. The mean DNA fragmentation index (DFI%) of the spermatozoa was 20.57?±?4.60% pre-operatively, and post-operatively at 17.27?±?3.65% at three months, 15.5?±?3.23% at six months and 15.3?±?3.63% at 12 months (P?<?0.001).The findings suggest that despite the increased count and motility, as well as the improved DNA fractures observed post-operatively in the spermatozoa of varicocele patients, the morphology rates remain intact.  相似文献   

15.
Control extender was incubated at 4 degrees C for 24 hours. Rubber or plastic syringe plungers were separately incubated in semen extender for 24 hours at 4 degrees C. Following incubation, the extender was stored at -20 degrees C until the time of semen collection. The treatments consisted of the following: Group A = equine semen plus control extender; Group B=equine semen plus extender incubated with rubber plungers and Group C=equine semen plus extender incubated in plastic plungers; Group D=equine semen plus control extended in rubber plunger syringes and Group E=equine semen plus control extender in plastic plunger syringer. Each group contained a 5-ml volume of semen and extender at a concentration of 1.0 x 10(8) sperm/ml. The number of live spermatozoa, percentage of progressively motile spermatozoa and rate of progressive motility were taken following collection and every 15 minutes for 1 hour following application of treatments. In experiment 2, treatments were allowed to incubate with semen for 45 minutes, then the extender was removed and was replaced with fresh extender. The rate of progressive motility and the percentage of progressively motile spermatozoa were taken immediately, at 45 minutes, and then every 15 minutes for 1 hour. In experiment 1, the number of live spermatozoa was not affected among the 5 groups. However, there was a decrease (P<0.01) in the rate of progressive motility and in the percentage of progressively motile spermatozoa in Group B compared with the remaining 4 treatment groups at 30, 45 and 60 minutes, with no differences noted when semen was held in syringes with a rubber or a plastic plunger. In experiment 2, the percentage of progressively motile spermatozoa increased after the addition of the control extender.  相似文献   

16.
Results on procedures for freezing stallion semen and the subsequent fertility during 20 years are presented. The present system applied in French National Stud includes: (1) a freezing protocol (dilution in milk, centrifugation and addition of freezing extender (INRA82+egg yolk (2%, v/v)+glycerol (2.5%, v/v) at 22 degrees C, a moderate cooling rate to 4 degrees C and freezing at -60 degrees C/min in 0.5-ml straws); (2) selection of ejaculates showing post-thaw rapid motility >35%; and (3) an insemination protocol (mares examined once daily, two AI of 400 x 10(6) spermatozoa 24 h apart before ovulation, sufficient number of straws to have the possibility to perform six AI of 400 x 10(6) total spermatozoa, i.e. 2.4 x 10(9) total spermatozoa available per mare per season). This system was applied to >110 stallions per year, the average post-thaw motility of ejaculates was 50% (>1800 ejaculates) before selection. The semen freezability was defined as the number of selected ejaculates divided by the total number of ejaculates frozen. Of the stallions, 5, 4, 5, 21 and 64% had semen freezability of 0-10, 10-33, 33-60, 60-90 and over 90%, respectively. Per-cycle pregnancy rate was 45-48% (>1500 mares per year, 1.8 cycles per mare) and foaling rate 64%. In comparison, per-cycle pregnancy rate and foaling rate of mares hand-mated to stallions were 57-59% and 64%, respectively. The average number of straws used was 32-35 (1.75 x 10(9) total spermatozoa) per mare per season. According to our results and the literature, the most important factors for improving fertility of frozen equine semen include: (1) a low concentration of glycerol (2-3.5% final concentration); (2) a suitable base extender for freezing like Lactose-Glucose EDTA or INRA82; (3) a post-thaw motility >30-35%; and (4) a sufficient number of spermatozoa per mare per season (1.5-2 x 10(9) total spermatozoa for two to three cycles) divided into small units. Numbers of spermatozoa, lower than 750.10(6) total spermatozoa per cycle, could result in lower per-cycle pregnancy rate with higher additional costs for management of mares. Because there are no particular regulations on quality and quantity of equine semen in the European Community, there is a need for the uniformity of information about frozen semen. A codification is suggested, based on the number of spermatozoa available per mare per season, the post-thaw motility and the final glycerol concentration.  相似文献   

17.
Using 22 males, 41 semen samples were collected from the vagina of mink by means of a plastic tubing attached to a 1 ml syringe. Subsamples of vaginal semen were diluted in 4 different extenders, viz., tris (tris, citric acid, glycine, fructose, glycerol and egg yolk), PVP (tris extender with polyvinyl pyrrolidone and caproic acid), milk (boiled and filtered milk with glycerol) and sodium citrate. The extended semen samples were stored at 23, 5 and −196°C for varying periods and evaluated for % motile spermatozoa. In the tris extender storage for 3 days at 5°C or for 2 days at 23°C reduced the number of spermatozoa by more than 50%. When milk was used as the extender, the motility decreased from an initial value of 68% to 10% after 5 days of 5°C and to 8% after 4 days at 23°C. The PVP extender was not suitable for storage at any temperature. After being frozen at −196°C for 2 hr, the motility ranged from 3–10% in the tris extender and was zero in milk and PVP extenders. Prolonged storage for 7 days in tris extender reduced the motility to 1–7%.  相似文献   

18.
Two experiments were designed to evaluate cooling rates and storage temperatures for stallion spermatozoa extended in caprogen (CAP), Cornell University extender (CUE), heated skimmilk (SM) and a nonfat-dried milk solids glucose extender (NFDMS-glucose). In Experiment 1, each extender was evaluated in a separate but similar 4 × 4 × 6 factorial trial using two ejaculates from each of six stallions. Aliquots of 66 × 106 spermatozoa were transferred to each of 16 coded tubes and extended to 6 ml with SM, CAP, CUE or NFDMS-glucose. Four tubes of extended semen were either plunged into 5C water or cooled at a rate of ?1.0, ?0.5, or ?0.2C/min. Within each treatment, one tube of extended semen was maintained at 20C, 15C, 10C or 5C. Progressive spermatozoal motility was estimated immediately after dilution (0 h) and at 4, 8, 12, 24 and 36 h. Regardless of extender, all three slower cooling rates were superior (P<0.05) to plunging to 5C; storage temperatures of 20C and 15C were superior (P<0.05) for maintaining spermatozoal motility. Experiment 2 was designed so that all extenders could be evaluated simultaneously. Since CUE resulted in an immediate depression of spermatozoal motility, it was not evaluated further. Semen was collected from 12 stallions and each ejaculate was extended in SM, CAP and NFDMS-glucose. Semen was cooled at ?1.0C/min and maintained at either 20C or 15C. Spermatozoal motility was assessed as in Experiment 1. Overall, the CAP and NFDMS-glucose extenders were superior (P<0.05) to SM for maintenance of spermatozoal motility. Storage at 20C or 15C resulted in similar (P>0.05) spermatozoal motility. Two fertility trials compared the use of SM and NFDMS-glucose extenders. Embryo recovery 6 days post-ovulation (Experiment 3) and pregnancy rate 50 days postestrus (Experiment 4) was similar (P>0.05) for mares inseminated with spermatozoa extended in SM or NFDMS-glucose.  相似文献   

19.
This study reports on the variation in semen quality and in spermatozoal and behavioral characteristics of 168 stallions representing 9 breeds and ranging in age from 2 to 26 yr. Semen samples were collected into an artificial vagina and the number of mounts and urethral pulsations per semen sample were recorded. Semen characteristics were examined for total volume, gel-free volume, gel volume, color score, mass activity, nonmotile spermatozoa, dead spermatozoa, semen density, spermatozoa concentration, total number of spermatozoa and semen pH. Morphological characteristics of the spermatozoa included abnormal heads, abnormal mid-pieces, abaxial mid-pieces, protoplasmic droplets and abnormal tails. Sources of variation were evaluated and the overall means calculated by least-squares analyses of variance for nonorthogonal data. The significance of breed effects and between stallion variability were estimated using mixed-model procedures. All semen characteristics with the exception of color and urethral pulsations had significant variation due to age. Semen quality (gel-free volume, sperm concentration, total sperm numbers and sperm abnormalities) was poorest in stallions under 3 yr of age and over 11 yr. Significant breed variation was apparent in most characteristics except for pH, semen color, abnormal midpieces and urethral pulsations. It is recommended that both the age and breed of stallion be taken into consideration when evaluating stallion semen.  相似文献   

20.
The effect of orally administered l-carnitine on the quality of semen obtained from stallions with different semen qualities was investigated. Four stallions with proven fertility (high motility group, HM) and with normal seminal characteristics (>50% progressive motility and > 80 x 10(6) spermatozoa/ml), and four questionable breeders (low motility group, LM) with <50% of sperm progressive motility and < 80 x 10(6) spermatozoa/ml, received p.o. 20 g of l-carnitine for 60 days. Blood and semen samples were collected before treatment (T0) and after 30 (T1) and 60 days (T2). Semen evaluation were performed on five consecutive daily ejaculates (n = 120 ejaculates) and conventional semen analysis was carried out on each ejaculate, both at collection and after refrigeration for 24, 48, and 72 h. Furthermore l-carnitine, acetylcarnitine, pyruvate, and lactate concentrations, and carnitine acetyltransferase activity (CAT) were determined both in raw semen and seminal plasma. There were an increase in progressive motile spermatozoa only in the LM group (26.8 +/- 12.9, 39.1 +/- 15.5, and 48.8 +/- 8.6 for T0, T1, and T2, respectively). Free seminal plasma carnitine concentration was higher in the LM group compared to the HM one. Both pyruvate and lactate were higher in the LM group. Raw semen and seminal plasma carnitine and acetylcarnitine levels correlate positively with both sperm concentration and progressive motility; moreover, acetylcarnitine content was positively correlated with total motile morphologically normal spermatozoa. In conclusion, oral administration of l-carnitine to stallions with questionable seminal characteristics may improve spermatozoa kinetics and morphological characteristics; whereas, it seem to be ineffective in normospermic animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号