首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Toward the end of 1989 the largest private veterinary laboratory in Finland (Vet/lab) began using a commercial combined ELISA test for Feline Immunodeficiency Virus (FIV) antibodies and Feline Leukemia Virus (FeLV) antigens (Cite ComboR). The overall proportion of FIV seropositive feline samples was 5% during the 22 month study period. The number of tests performed increased slowly while the positive test results decreased with time (7% in 1990 and 4% in 1991). The decrease in prevalence was assumed to reflect a change in the sample population rather than an actual change in the general cat population. There were more symptomatic and domestic cats tested in 1990 than 1991. The lower-risk groups in the second year of the study may simply be an indication that the cat owners became more aware of FIV and the motivation to send samples switched from the veterinarian’s interest to diagnose the disease in a symptomatic cat to the owner’s interest to survey their cats for possible FIV infection. In a multivariable analysis, breed, symptoms, age and sex were associated with the risk of FIV seropositivity The risk increased faster with age in males than in females (i.e., the age effect was not constant between sexes). The cats with symptoms had a higher risk than those without symptoms and non-purebred cats were at a higher risk than purebred cats. FeLV infection was not associated with FIV.  相似文献   

2.
Few data are available on the prevalence of feline viruses in European wildcats (Felis silvestris). Previous surveys have indicated that wildcats may be infected with the common viruses of domestic cats, apart from feline immunodeficiency virus (FIV). In the present study, 50 wildcats trapped throughout Scotland (UK) between August 1992 and January 1997 were tested for evidence of viral infection. All were negative for FIV by several serological or virological methods. By contrast, 10% of the cats were positive for feline leukemia virus (FeLV) antigen and infectious virus was isolated from 13% of a smaller subset. Of the wildcats tested for respiratory viruses, 25% yielded feline calicivirus (FCV) and although no feline herpesvirus was isolated, 16% of the samples had neutralizing antibodies to this virus. Antibodies to feline coronavirus (FCoV) were found in 6% of samples. Feline foamy virus (FFV) was an incidental finding in 33% of samples tested. This study confirms that wildcats in Scotland are commonly infected with the major viruses of the domestic cat, except for FIV.  相似文献   

3.
James R. Richards   《Biologicals》2005,33(4):215-217
Feline immunodeficiency virus (FIV) is a common feline pathogen, with an overall infection prevalence of approximately 11% in cats worldwide. Most infected cats eventually succumb due to direct viral effects or, more commonly, to secondary infections resulting from virus-induced immunosuppression. FIV infection is considered lifelong, and diagnosis most often relies on detection of virus-specific antibodies. A currently available whole virus, adjuvanted, inactivated FIV vaccine induces antibodies in vaccinates that is indistinguishable from those induced by infection. As a result, currently available diagnostic tests cannot reliably distinguish vaccinated cats from infected cats, or from cats that are both vaccinated and infected. From both an epidemiologic and an individual cat perspective, it is impossible to determine whether use of this vaccination is more beneficial than it is harmful.  相似文献   

4.
Feline immunodeficiency virus (FIV) infection induces an increase in two subpopulations (CD8alpha(+)beta(low) and CD8alpha(+)beta(-)) within CD8(+) peripheral blood lymphocytes (PBLs) of cats. It is known that depletion of CD8(+) cells often results in augmentation of FIV proliferation in PBL culture, similarly to the case of human immunodeficiency virus. In this study, we attempted to define PBL subpopulations mediating antiviral activity in five cats intravaginally infected with a molecularly cloned FIV isolate. Several subpopulations (CD8alpha(+)beta(+), CD8alpha(+)beta(-), and CD4(+) cells) were shown to participate in inhibition of the FIV replication, at least in part, in a major histocompatibility complex-unrestricted manner. Moreover, the subpopulations showing anti-FIV activity were different among the individual cats.  相似文献   

5.
Toxoplasma gondii and Bartonella spp. are zoonotic pathogens of cats. Feline immunodeficiency virus (FIV) and feline leukemia virus (FeLv) are related to human immunodeficiency virus and human leukemia virus, respectively, and these viruses are immunosuppressive. In the present study, the prevalence of antibodies to T. gondii , Bartonella spp., FIV, as well as FeLv and Dirofilaria immitis antigens was determined in sera from feral cats (Felis catus) from Cairo, Egypt. Using a modified agglutination test, antibodies to T. gondii were found in 172 (95.5%) of the 180 cats with titers of 1∶5 in 9, 1∶10 in 9, 1∶20 in 3, 1∶40 in 5, 1∶80 in 5, 1∶160 in 15, 1∶320 in 22, and 1∶640 or higher in 104. Thus, 57.4% had high T. gondii titers. Antibodies to Bartonella spp. were found in 105 (59.6%) of 178, with titers of 1∶64 in 45, 1∶128 in 39, 1∶256 in 13, 1∶512 in 3, 1∶1,024 in 4, and 1∶2,048 in 1 cat. Antibodies to FIV were detected in 59 (33.9%) of 174 cats. Of 174 cats tested, antigens to FeLv, and D. immitis were detected in 8 (4.6%) and 6 (3.4%) cats, respectively. The results indicate a high prevalence of T. gondii, Bartonella spp., and FIV infections in cats from Cairo, Egypt. This is the first report of Bartonella spp., and D. immitis infection in cats in Egypt.  相似文献   

6.
Feline immunodeficiency virus (FIV) was isolated from a wild-caught Tsushima cat (Felis bengalensis euptilura), an endangered Japanese nondomestic subspecies of leopard cat (F. bengalensis). Phylogenetic analysis of the env gene sequences indicated that the FIV from the Tsushima cat belonged to a cluster of subtype D FIVs from domestic cats. FIVs from both the Tsushima cat and the domestic cat showed similar levels of replication and cytopathicity in lymphoid cell lines derived from these two species. The results indicated the occurrence of interspecies transmission of FIV from the domestic cat to the Tsushima cat in the wild.  相似文献   

7.
Feline immunodeficiency virus (FIV) is a lentivirus associated with AIDS-like illnesses in cats. As such, FIV appears to be a feline analog of human immunodeficiency virus (HIV). A hallmark of HIV infection is the large degree of viral genetic diversity that can develop within an infected individual and the even greater and continually increasing level of diversity among virus isolates from different individuals. Our goal in this study was to determine patterns of FIV genetic diversity by focusing on a 684-nucleotide region encompassing variable regions V3, V4, and V5 of the FIV env gene in order to establish parallels and distinctions between FIV and HIV type 1 (HIV-1). Our data demonstrate that, like HIV-1, FIV can be separated into distinct envelope sequence subtypes (three are described here). Similar to that found for HIV-1, the pairwise sequence divergence within an FIV subtype ranged from 2.5 to 15.0%, whereas that between subtypes ranged from 17.8 to 26.2%. However, the high number of synonymous nucleotide changes among FIV V3 to V5 env sequences may also include a significant number of back mutations and suggests that the evolutionary distances among FIV subtypes are underestimated. Although only a few subtype B viruses were available for examination, the pattern of diversity between the FIV A and B subtypes was found to be significantly distinct; subtype B sequences had proportionally fewer mutations that changed amino acids, compared with silent changes, suggesting a more advanced state of adaptation to the host. No similar distinction was evident for HIV-1 subtypes. The diversity of FIV genomes within individual infected cats was found to be as high as 3.7% yet twofold lower than that within HIV-1-infected people over a comparable region of the env gene. Despite these differences, significant parallels between patterns of FIV evolution and HIV-1 evolution exist, indicating that a wide array of potentially divergent virus challenges need to be considered in FIV vaccine and pathogenesis studies.  相似文献   

8.
Feline immunodeficiency virus (FIV) is a lentivirus that causes AIDS-like immunodeficiency disease in domestic cats. Free-ranging lions, Panthera leo, carry a chronic species-specific strain of FIV, FIV-Ple, which so far has not been convincingly connected with immune pathology or mortality. FIV-Ple, harboring the three distinct strains A, B, and C defined by pol gene sequence divergences, is endemic in the large outbred population of lions in the Serengeti ecosystem in Tanzania. Here we describe the pattern of variation in the three FIV genes gag, pol-RT, and pol-RNase among lions within 13 prides to assess the occurrence of FIV infection and coinfection. Genome diversity within and among FIV-Ple strains is shown to be large, with strain divergence for each gene approaching genetic distances observed for FIV between different species of cats. Multiple in fections with two or three strains were found in 43% of the FIV-positive individuals based on pol-RT sequence analysis, which may suggest that antiviral immunity or interference evoked by one strain is not consistently protective against infection by a second. This comprehensive study of FIV-Ple in a free-ranging population of lions reveals a dynamic transmission of virus in a social species that has historically adapted to render the virus benign.  相似文献   

9.
Feline immunodeficiency virus (FIV) causes AIDS-like symptoms in infected cats. Concanavalin A (ConA)-stimulated peripheral blood mononuclear cells (PBMC) from chronically FIV strain PPR-infected cats readily expressed FIV. In contrast, when PBMC from these animals were stimulated with irradiated, autologous antigen-presenting cells (APC), at least a 10-fold drop in viral production was observed. In addition to FIV-specific cytotoxic T lymphocytes, anti-FIV activity was demonstrated in the cell-free supernatants of effector T lymphocytes stimulated with APC. The FIV-suppressive activity was induced from APC-stimulated PBMC of either FIV-infected or uninfected cats but not from ConA-stimulated PBMC. Suppression of FIV strain PPR replication was observed for both autologous and heterologous feline PBMC, was dose dependent, and demonstrated cross-reactivity and cell specificity. It was also demonstrated that the anti-FIV activity originated from CD8(+) T lymphocytes and was mediated by a noncytolytic mechanism.  相似文献   

10.
11.
Shimojima M 《Uirusu》2007,57(1):75-82
Feline immunodeficiency virus (FIV) induces a disease similar to acquired immunodeficiency syndrome (AIDS) in cats, yet in contrast to human immunodeficiency virus (HIV), CD4 is not the viral receptor. We identified a primary receptor for FIV as CD134 (OX40), a T cell activation antigen and costimulatory molecule. CD134 expression promotes viral binding and renders cells permissive for viral entry, productive infection, and syncytium formation. Infection is CXCR4-dependent, analogous to infection with X4 strains of HIV. Thus, despite the evolutionary divergence of the feline and human lentiviruses, both viruses use receptors that target the virus to a subset of cells that are pivotal to the acquired immune response. Further, we applied the new method for FIV receptor to Ebola virus entry factors with some modifications, and identified receptor-type tyrosine kinases, Axl and Dtk (members of Tyro3 family). Distribution of the molecules matches well with the Ebola virus tropism.  相似文献   

12.
Feline immunodeficiency virus (FIV) is a lentivirus which causes an AIDS-like disease in domestic cats (Felis catus). A number of other felid species, including the puma (Puma concolor), carry a virus closely related to domestic cat FIV. Serological testing revealed the presence of antibodies to FIV in 22% of 434 samples from throughout the geographic range of the puma. FIV-Pco pol gene sequences isolated from pumas revealed extensive sequence diversity, greater than has been documented in the domestic cat. The puma sequences formed two highly divergent groups, analogous to the clades which have been defined for domestic cat and lion (Panthera leo) FIV. The puma clade A was made up of samples from Florida and California, whereas clade B consisted of samples from other parts of North America, Central America, and Brazil. The difference between these two groups was as great as that reported among three lion FIV clades. Within puma clades, sequence variation is large, comparable to between-clade differences seen for domestic cat clades, allowing recognition of 15 phylogenetic lineages (subclades) among puma FIV-Pco. Large sequence divergence among isolates, nearly complete species monophyly, and widespread geographic distribution suggest that FIV-Pco has evolved within the puma species for a long period. The sequence data provided evidence for vertical transmission of FIV-Pco from mothers to their kittens, for coinfection of individuals by two different viral strains, and for cross-species transmission of FIV from a domestic cat to a puma. These factors may all be important for understanding the epidemiology and natural history of FIV in the puma.  相似文献   

13.
Feline immunodeficiency virus (FIV) infection of domestic cats represents a valuable system through which to investigate criteria for antilentiviral vaccines in a natural host species. Here, we examined whether vaccination with a strain of FIV attenuated as a result of prolonged growth in vitro could protect against a fully virulent, highly heterologous intraclade challenge. The results indicated that the vaccine virus produced a low-grade infection with no detectable pathological effects and afforded a long-lasting sterilizing immunity if the challenge was delivered intraperitoneally as cell-free virus but not against a cell-associated intravaginal challenge. In the latter case, however, the replication and pathological consequences of the challenge virus were markedly suppressed. Together with similar results obtained in rhesus monkey models, these findings should give impulse to the development of attenuated FIV vaccines to be tested in controlled studies in field cats. Field studies may provide answers to some of the existing safety concerns surrounding attenuated AIDS vaccines in humans.  相似文献   

14.
Feline immunodeficiency virus (FIV) is a lentivirus that infects cats and is related to human immunodeficiency virus (HIV). Although it is a common worldwide infection, and has potential uses as a human gene therapy vector and as a nonprimate model for HIV infection, little detail is known of the viral life cycle. Previous experiments have shown that its packaging signal includes two or more regions within the first 511 nucleotides of the genomic RNA. We have undertaken a secondary structural analysis of this RNA by minimal free-energy structural prediction, biochemical mapping, and phylogenetic analysis, and show that it contains five conserved stem–loops and a conserved long-range interaction between heptanucleotide sequences 5′-CCCUGUC-3′ in R/U5 and 5′-GACAGGG-3′ in gag. This long-range interaction is similar to that seen in primate lentiviruses where it is thought to be functionally important. Along with strains that infect domestic cats, this heptanucleotide interaction can also occur in species-specific FIV strains that infect pumas, lions, and Pallas' cats where the heptanucleotide sequences involved vary. We have analyzed spliced and genomic FIV RNAs and see little structural change or sequence conservation within single-stranded regions of the 5′ UTR that are important for viral packaging, suggesting that FIV may employ a cotranslational packaging mechanism.  相似文献   

15.
16.
Feline immunodeficiency virus (FIV) infection in cats follows a disease course similar to HIV-1, including a short acute phase characterized by high viremia, and a prolonged asymptomatic phase characterized by low viremia and generalized immune dysfunction. CD4+CD25hiFoxP3+ immunosuppressive regulatory T (Treg) cells have been implicated as a possible cause of immune dysfunction during FIV and HIV-1 infection, as they are capable of modulating virus-specific and inflammatory immune responses. Additionally, the immunosuppressive capacity of feline Treg cells has been shown to be increased during FIV infection. We have previously shown that transient in vivo Treg cell depletion during asymptomatic FIV infection reveals FIV-specific immune responses suppressed by Treg cells. In this study, we sought to determine the immunological influence of Treg cells during acute FIV infection. We asked whether Treg cell depletion prior to infection with the highly pathogenic molecular clone FIV-C36 in cats could alter FIV pathogenesis. We report here that partial Treg cell depletion prior to FIV infection does not significantly change provirus, viremia, or CD4+ T cell levels in blood and lymphoid tissues during the acute phase of disease. The effects of anti-CD25 mAb treatment are truncated in cats acutely infected with FIV-C36 as compared to chronically infected cats or FIV-naïve cats, as Treg cell levels were heightened in all treatment groups included in the study within two weeks post-FIV infection. Our findings suggest that the influence of Treg cell suppression during FIV pathogenesis is most prominent after Treg cells are activated in the environment of established FIV infection.  相似文献   

17.
We determined prevalence to feline immunodeficiency virus (FIV) antibodies, feline leukemia virus (FeLV) antigen, and Toxoplasma gondii antibodies in feral cats (Felis catus) on Mauna Kea Hawaii from April 2002 to May 2004. Six of 68 (8.8%) and 11 of 68 (16.2%) cats were antibody positive to FIV and antigen positive for FeLV, respectively; 25 of 67 (37.3%) cats were seropositive to T. gondii. Antibodies to FeLV and T. gondii occurred in all age and sex classes, but FIV occurred only in adult males. Evidence of current or previous infections with two of these infectious agents was detected in eight of 64 cats (12.5%). Despite exposure to these infectious agents, feral cats remain abundant throughout the Hawaiian Islands.  相似文献   

18.
More than 90% of cats immunized with inactivated whole infected-cell or cell-free feline immunodeficiency virus (FIV) vaccines were protected against intraperitoneal infection with 10 50% animal infectious doses of either homologous FIV Petaluma (28 of 30 cats) or heterologous FIV Dixon strain (27 of 28 cats). All 15 control cats were readily infected with either strain of FIV. Protection appears to correlate with antiviral envelope antibody levels by a mechanism yet to be determined.  相似文献   

19.
Feline immunodeficiency virus (FIV) infection is a naturally occurring lentiviral infection of cats which progresses to immunodeficiency in a manner strikingly similar to that observed in HIV infection in man. The rectal and cervico-vaginal mucosae are common routes of transmission of HIV and it has been shown that the gastrointestinal tract is an important site of HIV infection and primary pathology. Although biting is the principle mode of transmission for FIV, we have shown that it is possible to reliably infect cats via both the rectal and vaginal routes. Using a biotin-streptavidin linked immunoperoxidase technique we have detected FIV core and envelope proteins in the colonic follicle associated epithelial cells, cells within the lymphoid follice and occasional cells in the lamina propria. Further, in the intestine we have detected FIV RNA and proviral DNA in epithelial cells, colonic lymphoid aggregates and isolated lamina propria cells. We have studied a group of asymptotic cats which have been rectally infected with FIV for 1 year or longer and shown an increase in the number of lamina propria CD8+ cells and greater levels of IL-2, IL-6, IL-10 and gamma-IFN mRNA. Since these cats remained clinically healthy these results might suggest that both local antibody and class I restricted cytotoxic lymphocytes (CTLs) may play a role in control of viral replication. We have investigated a range of vaccination regimes for their ability to generate responses which would protect from rectal challenge with virulent virus. Cats have been immunized with whole virus (FIV-pet, FIV-GLA-8), V3, V3MAP or C2 with cholera toxin (CT), or Quil A based adjuvants via rectal, intra-nasal, parenteral or targeted lymph node routes, and challenged rectally with ten mucosal cat infectious doses (MCID) of FIV-GLA-8. We have shown that the adjuvant effects of cholera toxin and Quil A are not influenced by the route of delivery (intraperitoneal (i.p.) versus rectal) with CT more effective in stimulating humoral and Quil A more effective in stimulating cellular responses to FIV antigens. However we have shown that, quantitatively, CT is more effective when used as an adjuvant via the intra-nasal than the rectal route. Recently, we have begun to investigate if the promising results obtained with targeted lymph node (TLN) vaccination in monkeys could be reproduced in the cat. We have shown that TLN was more effective than rectal immunisation in stimulating both humoral and proliferative responses. In a preliminary study we have also been able to detect FIV specific CTLs and have observed protection from rectal challenge in four out of four cats.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号