首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
PolycombGroup (PcG) proteins are epigenetic silencers involved in maintaining cellular identity, and their deregulation can result in cancer [1]. Mice without the PcG gene Bmi1 are runted and suffer from progressive loss of hematopoietic and neural stem cells [2-4]. Here, we assess the effects of Bmi1 on stem cells and differentiation of an epithelial tissue in vivo. We chose the mammary gland because it allows limiting dilution transplantations [5, 6] and because Bmi1 is overexpressed in breast cancer [7, 8]. Our analyses show that Bmi1 is expressed in all cells of the mouse mammary gland and is especially high in luminal cells. Loss of Bmi1 results in a severe mammary-epithelium growth defect, which can be rescued by codeletion of the Ink4a/Arf locus or pregnancy. Even though mammary stem cells are present in the absence of Bmi1, their activity is reduced, and this is only partially due to Ink4a/Arf expression. Interestingly, loss of Bmi1 causes premature lobuloalveolar differentiation, whereas overexpression of Bmi1 inhibits lobuloalveolar differentiation induced by pregnancy hormones. Because Bmi1 affects not only mammary stem cells but also more committed cells, our data warrant a more detailed analysis of the different roles of Bmi1 in breast-cancer etiology.  相似文献   

3.
Postnatally, the mammary gland undergoes continuous morphogenesis and thereby is especially prone to malignant transformation. Thus, the maintenance of the epithelium depends on a tight control of stem cell recruitment. We have previously shown that epithelial overexpression of the EphB4 receptor results in defective mammary epithelial development and conferred a metastasizing tumor phenotype on experimental mouse mammary tumors accompanied by a preponderance of progenitor cells. To analyze the effect of EphB4 overexpression on mammary epithelial cell fate, we have used Fluorescence Activated Cell Sorting (FACS) analyses to quantify epithelial sub‐populations and repopulation assays of cleared fat pads to investigate their regenerative potential. These experiments revealed that deregulated EphB4 expression leads to an augmentation of bi‐potent progenitor cells and to a shift of the differentiation pathway towards the luminal lineage. The analyses of the ductal outgrowths indicated that EphB4 overexpression leads to enforced branching activity, impedes ductal differentiation and stimulates angiogenesis. To elucidate the mechanisms forwarding EphB4 signals, we have compared the expression profile of defined cell populations between EphB4 transgene and wild type mammary glands concentrating on the wnt signaling pathway and on genes implicated in cell migration. With respect to wnt signaling, the progenitor cell population was the most affected, whereas the stem cell‐enriched population showed the most pronounced deregulation of migration‐associated genes. Thus, the luminal epithelial EphB4 signaling contributes, most likely via wnt signaling, to the regulation of migration and cell fate of early progenitors and is involved in the determination of branching points along the ductal tree.  相似文献   

4.
The Ron receptor tyrosine kinase is expressed in normal breast tissue and is overexpressed in approximately 50% of human breast cancers. Despite the recent studies on Ron in breast cancer, nothing is known about the importance of this protein during breast development. To investigate the functional significance of Ron in the normal mammary gland, we compared mammary gland development in wild-type mice to mice containing a targeted ablation of the tyrosine kinase (TK) signaling domain of Ron (TK−/−). Mammary glands from RonTK−/− mice exhibited accelerated pubertal development including significantly increased ductal extension and branching morphogenesis. While circulating levels of estrogen, progesterone, and overall rates of epithelial cell turnover were unchanged, significant increases in phosphorylated MAPK, which predominantly localized to the epithelium, were associated with increased branching morphogenesis. Additionally, purified RonTK−/− epithelial cells cultured ex vivo exhibited enhanced branching morphogenesis, which was reduced upon MAPK inhibition. Microarray analysis of pubertal RonTK−/− glands revealed 393 genes temporally impacted by Ron expression with significant changes observed in signaling networks regulating development, morphogenesis, differentiation, cell motility, and adhesion. In total, these studies represent the first evidence of a role for the Ron receptor tyrosine kinase as a critical negative regulator of mammary development.  相似文献   

5.
High levels of the S100 calcium binding protein S100A4 also called fibroblast specific protein 1 (FSP1) have been established as an inducer of metastasis and indicator of poor prognosis in breast cancer. The mechanism by which S100A4 leads to increased cancer aggressiveness has yet to be established; moreover, the function of this protein in normal mammary gland biology has not been investigated. To address the role of S100A4 in normal mammary gland, its spatial and temporal expression patterns and possible function in branching morphogenesis were investigated. We show that the protein is expressed mainly in cells of the stromal compartment of adult humans, and during active ductal development, in pregnancy and in involution of mouse mammary gland. In 3D culture models, topical addition of S100A4 induced a significant increase in the TGFα mediated branching phenotype and a concomitant increase in expression of a previously identified branching morphogen, metalloproteinase-3 (MMP-3). These events were found to be dependent on MEK activation. Downregulation of S100A4 using shRNA significantly reduced TGFα induced branching and altered E-cadherin localization. These findings provide evidence that S100A4 is developmentally regulated and that it plays a functional role in mammary gland development, in concert with TGFα by activating MMP-3, and increasing invasion into the fat pad during branching. We suggest that S100A4-mediated effects during branching morphogenesis provide a plausible mechanism for how it may function in breast cancer progression.  相似文献   

6.
GATA6 regulates differentiation of distal lung epithelium   总被引:8,自引:0,他引:8  
  相似文献   

7.
8.
In mammals, the Ror-family receptor tyrosine kinases consist of two structurally related proteins, Ror1 and Ror2, characterized by the extracellular Frizzled-like cysteine-rich domain and membrane proximal kringle domains. As an attempt to gain insights into their roles in mouse development, expression patterns of Ror1 and Ror2 during early embryogenesis were examined and compared. Interestingly, at early stages, Ror1 and Ror2 exhibit similar expression patterns in the developing face, including the frontonasal process and pharyngeal arches, which are derived from cephalic neural crest cells. On the other hand, they exhibit different expression patterns in the developing limbs and brain, where the expression of Ror2 was detected broadly compared with that of Ror1. At a later stage, both genes are expressed in a similar fashion in the developing heart and lung, yet in a distinct manner in the brain and eye.  相似文献   

9.
Alterations in gene expression accompany cell-type-specific differentiation. In complex systems where functional differentiation depends on the organization of specific cell types into highly specialized structures (tissue morphogenesis), it is not known how epigenetic mechanisms that control gene expression influence this stepwise differentiation process. We have investigated the effect of DNA methylation, a major epigenetic pathway of gene silencing, on the regulation of mammary acinar differentiation. Our in vitro model of differentiation encompasses human mammary epithelial cells that form polarized and hollow tissue structures (acini) when cultured in the presence of basement membrane components. We found that acinar morphogenesis was accompanied with chromatin remodeling, as shown by alterations in histone 4 acetylation, heterochromatin 1 protein, and histone 3 methylated on lysine 9, and with an increase in expression of MeCP2, a mediator of DNA-methylation-induced gene silencing. DNA hypomethylation induced by treatment with 5-aza-2' deoxycytidine during acinar differentiation essentially prevented the formation of apical tissue polarity. This treatment also induced the expression of CK19, a marker of cells that are in a transitional differentiation stage. These results suggest that DNA methylation is a mechanism by which mammary epithelial differentiation is coordinated both at the tissue and cellular levels.  相似文献   

10.
11.
Although the neuropilins were characterized as semaphorin receptors that regulate axon guidance, they also function as vascular endothelial growth factor (VEGF) receptors and contribute to the development of other tissues. Here, we assessed the role of NRP2 in mouse mammary gland development based on our observation that NRP2 is expressed preferentially in the terminal end buds of developing glands. A floxed NRP2 mouse was bred with an MMTV-Cre strain to generate a mammary gland-specific knockout of NRP2. MMTV-Cre;NRP2(loxP/loxP) mice exhibited significant defects in branching morphogenesis and ductal outgrowth compared with either littermate MMTV-Cre;NRP2(+/loxP) or MMTV-Cre mice. Mechanistic insight into this morphological defect was obtained from a mouse mammary cell line in which we observed that VEGF(165), an NRP2 ligand, induces branching morphogenesis in 3D cultures and that branching is dependent upon NRP2 as shown using shRNAs and a function-blocking antibody. Epithelial cells in the mouse mammary gland express VEGF, supporting the hypothesis that this NRP2 ligand contributes to mammary gland morphogenesis. Importantly, we demonstrate that VEGF and NRP2 activate focal adhesion kinase (FAK) and promote FAK-dependent branching morphogenesis in vitro. The significance of this mechanism is substantiated by our finding that FAK activation is diminished significantly in developing MMTV-Cre;NRP2(loxP/loxP) mammary glands compared with control glands. Together, our data reveal a VEGF/NRP2/FAK signaling axis that is important for branching morphogenesis and mammary gland development. In a broader context, our data support an emerging hypothesis that directional outgrowth and branching morphogenesis in a variety of tissues are influenced by signals that were identified initially for their role in axon guidance.  相似文献   

12.
13.
As demonstrated by a variety of animal studies, barrier function in the mammary epithelium is essential for a fully functioning and differentiated gland. However, there is a paucity of information on barrier function in human mammary epithelium. Here, we have established characteristics of a polarizing differentiating model of human mammary epithelial cells capable of forming a high-resistance/low-conductance barrier in a predictable manner, viz., by using MCF10A cells on permeable membranes. Inulin flux decreased and transepithelial electrical resistance (TEER) increased over the course of several days after seeding MCF10A cells on permeable membranes. MCF10A cells exhibited multipotent phenotypic differentiation into layers expressing basal and lumenal markers when placed on permeable membranes, with at least two distinct cell phenotypes. A clonal subline of MCF10A, generated by culturing stem-like cells under non-adherent conditions, also generated a barrier-forming epithelial membrane with cells expressing markers of both basal and lumenal differentiation (CD10 and MUC1, respectively). Progressive changes associated with differentiation, including wholesale inhibition of cell-cycle genes and stimulation of cell and tissue morphogenic genes, were observed by gene expression profiling. Clustering and gene ontology categorization of significantly altered genes revealed a pattern of lumenal epithelial-cell-specific differentiation. A.M.M. and V.P.P. contributed equally to this work and should be considered primary coauthors. This work was supported in part by grants from the National Institutes of Health (DK52134) and Department of the Army (BC052576) to N.D.H. and a predoctoral fellowship (HD007463) to A.M.M. This project was also supported by National Research Initiative Competitive Grant no. 2007-35206-17898 from the USDA Cooperative State Research, Education, and Extension Service.  相似文献   

14.
15.
Adherent epithelial cells require interactions with the extracellular matrix for their survival, though the mechanism is ill-defined. In long term cultures of primary mammary epithelial cells, a laminin-rich basement membrane (BM) but not collagen I suppresses apoptosis, indicating that adhesion survival signals are specific in their response (. J. Cell Sci. 109:631-642). We now demonstrate that the signal from BM is mediated by integrins and requires both the alpha6 and beta1 subunits. In addition, a hormonal signal from insulin or insulin-like growth factors, but not hydrocortisone or prolactin, is necessary to suppress mammary cell apoptosis, indicating that BM and soluble factors cooperate in survival signaling. Insulin induced autophosphorylation of its receptor whether mammary cells were cultured on collagen I or BM substrata. However, both the tyrosine phosphorylation of insulin receptor substrate-1 and its association with phosphatidylinositol 3-kinase were enhanced in cells cultured on BM, as was the phosphorylation of the phosphatidylinositol 3-kinase effector, protein kinase B. These results suggest a novel extracellular matrix-dependent restriction point in insulin signaling in mammary epithelial cells. The proximal signal transduction event of insulin receptor phosphorylation is not dependent on extracellular matrix, but the activation of downstream effectors requires adhesion to BM. Since phosphatidylinositol 3-kinase was required for mammary epithelial cell survival, we propose that a possible mechanism for BM-mediated suppression of apoptosis is through its facilitative effects on insulin signaling.  相似文献   

16.
17.
Principles of neurogenesis and neuronal maturation within theolfactory neuroepithelia are not fully understood. A morphometricanalysis, in which cell types were counted in BALB/c mice ofdifferent ages, was performed on the olfactory epithelium proper(OEP) in order to provide a clearer definition of these processes.Of particular interest were the density of mature receptor cells,the ratio between receptor cells and progenitor cells (lightbasal cells), and changes that occurred among basal cells withage. The results show that neurogenesis becomes slower withage, and suggest that some measure of mature receptor cell densitymay be important in controlling neurogenesis. The implicationsof these investigations to the development of topographicalprojections from the OEP to the olfactory bulb, and the establishmentof functional maps within the bulb are discussed.  相似文献   

18.
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the formation of multiple fluid-filled cysts that expand over time and destroy the renal architecture. Loss or mutation of polycystin-1 or polycystin-2, the respective proteins encoded by the ADPKD genes PKD1 and PKD2, is associated with most cases of ADPKD. Thus, the polycystin proteins likely play a role in cell proliferation and morphogenesis. Recent studies indicate that polycystin-1 is involved in these processes, but little is known about the role played by polycystin-2. To address this question, we created a number of related cell lines variable in their expression of polycystin-2. We show that the basal and epidermal growth factor-stimulated rate of cell proliferation is higher in cells that do not express polycystin-2 versus those that do, indicating that polycystin-2 acts as a negative regulator of cell growth. In addition, cells not expressing polycystin-2 exhibit significantly more branching morphogenesis and multicellular tubule formation under basal and hepatocyte growth factor-stimulated conditions than their polycystin-2-expressing counterparts, suggesting that polycystin-2 may also play an important role in the regulation of tubulogenesis. Cells expressing a channel mutant of polycystin-2 proliferated faster than those expressing the wild-type protein, but exhibited blunted tubule formation. Thus, the channel activity of polycystin-2 may be an important component of its regulatory machinery. Finally, we show that polycystin-2 regulation of cell proliferation appears to be dependent on its ability to prevent phosphorylated extracellular-related kinase from entering the nucleus. Our results indicate that polycystin-2 is necessary for the proper growth and differentiation of kidney epithelial cells and suggest a possible mechanism for the cyst formation seen in ADPKD2.  相似文献   

19.
Ror1 and Ror2 are orphan receptor tyrosine kinases that are most closely related to MuSK and the Trk family of neurotrophin receptors. We report the results of an extensive in situ hybridisation survey of the expression of these genes during mouse development. Expression of Ror1 and Ror2 differs markedly at early stages (E8.5--E9.5). At these times, Ror2 is expressed much more widely than Ror1, expression of which is largely restricted to head mesenchyme. At later stages of development (E12.5--E14.5), Ror1 expression expands and Ror2 expression becomes more restricted than at earlier times, although expression of Ror1 continues to be more restricted than that of Ror2. These changes result in overlapping expression domains but with major differences remaining. In many cases Ror1 is expressed in a sub-set of Ror2-expressing tissues; in others, there is complementary expression of Ror1 and Ror2. Ror1 and Ror2 are both expressed in derivatives of all three germ layers and in most organ systems, including the nervous, circulatory, respiratory, digestive, urogenital and skeletal systems. Conspicuous themes are the expression in major sense organs, and in neural crest and its derivatives.  相似文献   

20.
Virgin mouse mammary gland in explant culture will differentiate and synthesize casein and α-lactalbumin when insulin, hydrocortisone, and prolactin (IFPRL) are present in the culture medium. Explants whose DNA synthesis has been blocked differentiate cytologically, mobilize lipid, synthesize RNA, and incorporate 3H-amino acids into proteins to the same extent as unblocked tissue. Nevertheless, casein synthesis as measured by immunoprecipitation with casein-specific antiserum remains at the zero-time level in blocked explants while unblocked explants produce casein at five- to eightfold greater levels. Electrophoretic analysis of immunoprecipitated radioactive proteins showed that the IFPRL-treated virgin tissue made all four size classes of mouse casein. Immunoperoxidase studies of explants revealed that the number of mammary epithelial cells positive for casein was 2–8% in blocked and 24–31% in unblocked, in good agreement with the radioimmunoprecipitation results. Immunoelectron microscopy demonstrated the accumulation of casein within the cisternae of the granular endoplasmic reticulum and in Golgi vacuoles in the unblocked epithelial cells. Similar accumulation did not occur in blocked cultures despite the secretory appearance of the cells. Autoradiographic analysis of blocked and unblocked explants, incubated in the presence of IFPRL and [3H]thymidine for 72 hr, showed that 53–57% of the epithelial cells synthesized DNA in unblocked explants, whereas only 2% incorporated the label in the presence of cytosine arabinoside. When explants were incubated with IFPRL and various concentrations of colchicine, only 5–6% of the epithelial cells were found to enter mitosis. Since cell duplication cannot account for the severalfold increase in casein-producing cells in the unblocked explants, the results suggest that the requirement for DNA synthesis in this system may involve either polyploid cells or the augmentation of specific sequences necessary for the facilitation of terminal differentiation. Similar requirements for DNA synthesis were not observed in mammary explants from pregnant and primiparous (but nonpregnant) mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号