首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Equine herpesvirus type 1 (EHV-1) and EHV-4 are genetically and antigenically very similar, but their pathogenic potentials are strikingly different. The differences in pathogenicity between both viruses seem to be reflected in cellular host range: EHV-1 can readily be propagated in many cell types of multiple species, while EHV-4 entry and replication appear to be restricted mainly to equine cells. The clear difference in cellular tropism may well be associated with differences in the gene products involved in virus entry and/or spread from cell to cell. Here we show that (i) most of the EHV-1 permissive cell lines became resistant to EHV-1 expressing EHV-4 glycoprotein D (gD4) and the opposite was observed for EHV-4 harboring EHV-1 gD (gD1). (ii) The absence of integrins did not inhibit entry into and replication of EHV-1 in CHO-K1 or peripheral blood mononuclear cells (PBMC). Furthermore, integrin-negative K562 cells did not acquire the ability to bind to gD1 when αVβ3 integrin was overexpressed. (iii) PBMC could be infected with similar efficiencies by both EHV-1 and EHV-4 in vitro. (iv) In contrast to results for equine fibroblasts and cells of endothelial or epithelial origin, we were unable to block entry of EHV-1 or EHV-4 into PBMC with antibodies directed against major histocompatibility complex class I (MHC-I), a result that indicates that these viruses utilize a different receptor(s) to infect PBMC. Cumulatively, we provide evidence that efficient EHV-1 and EHV-4 entry is dependent mainly on gD, which can bind to multiple cell surface receptors, and that gD has a defining role with respect to cellular host range of EHV-1 and EHV-4.  相似文献   

2.
Equine herpesvirus 1 (EHV-1) is a pathogen causing rhinopneumonia in young horses, abortion in mares, and myeloencephalitis in adult horses. Two types, EHV-1 P and EHV-1 B, have recently been dominant among 16 electropherotypes. EHV-1 P and EHV-1 B viruses were compared by long and accurate polymerase chain reaction (LA-PCR) and restriction fragment length polymorphism (RFLP) analysis. Differences in restriction sites were found to be focused in ORF64, which encodes the infected cell protein 4 (ICP4), and downstream of the ICP4 gene. The 3 ' -end and downstream of ICP4 gene of EHV-1 B were found to be replaced by the corresponding region of EHV-4, indicating that EHV-1 B is a naturally occurring recombinant virus between progenitors of EHV-1 P and EHV-4. This is the first report showing a natural interspecies recombinant in alphaherpesviruses.  相似文献   

3.
A total of 51 sera from a migratory population of Burchell's zebras (Equus burchelli) were collected in the Serengeti National Park (Tanzania) between 1999 and 2001 to assess levels of exposure to equine herpesvirus types 1, 2, 4, 9 (EHV-1, -2, -4, -9), EHV-1 zebra isolate T965, and equine arteritis virus (EAV). Using virus-specific neutralizing antibody tests, seroprevalence was high for EHV-9 (60% of 45), moderate for EAV (24% of 51), and lower for the EHV-1-related zebra isolate (17% of 41), EHV-1 (14% of 49), and EHV-4 (2% of 50). No evidence for exposure to EHV-2 was found (0% of 51). The high level of exposure to EHV-9 is interesting because evidence of infection with this virus has not been previously described in any wild equine population. Although the epidemiology of EHV-9 in Burchell's zebras is presently unknown, our results suggest that in East Africa, this species may be a natural host of EHV-9, a neuropathogenic virus that was only recently isolated from captive Thomson's gazelles (Gazella thomsoni) in Japan. There is currently no evidence that EHV-9 induced mortality in Burchell's zebras in the Serengeti, but because of the reported virulence of this virus for more susceptible species such as Thomson's gazelles, viral transmission from infected zebras to ungulates may result in mortality.  相似文献   

4.
To localize the genes for the major glycoproteins of equine herpesvirus 1 (EHV-1), a library of the EHV-1 genome was constructed in the lambda gt11 expression vector. Recombinant bacteriophage expressing EHV-1 glycoprotein epitopes as fusion products with beta-galactosidase were detected by immunoscreening with monoclonal antibodies specific for each of six EHV-1 glycoproteins. Seventy-four recombinant lambda gt11 clones reactive with EHV-1 monoclonal antibodies were detected among 4 X 10(5) phage screened. Phage expressing determinants on each of the six EHV-1 glycoproteins were represented in the library. Herpesviral DNA sequences contained in lambda gt11 recombinants expressing epitopes of EHV-1 glycoproteins were used as hybridization probes for mapping insert sequences on the viral genome. Genes for five EHV-1 glycoproteins (gp2, gp10, gp13, gp14, and gp21/22a) mapped to the genome L component; only one EHV-1 glycoprotein (gp17/18) was expressed from the unique S region of the genome where genes of several major glycoproteins of other herpesviruses have been located. Two glycoproteins of EHV-1, gp13 and gp14, mapped to positions colinear with genes of major glycoproteins identified in several other alphaherpesviruses (gC- and gB-like glycoproteins, respectively). The genomic locations of other EHV-1 glycoproteins indicated the existence of major glycoproteins of EHV-1 (gp2, gp10, and gp21/22a) for which no genetic homologs have yet been detected in other herpesviruses. The results confirm the general utility of the lambda gt11 expression system for localizing herpesvirus genes and suggest that the genomic positioning of several high-abundance glycoproteins of EHV-1 may be different from that of the prototype alphaherpesvirus, herpes simplex virus.  相似文献   

5.
Although both equine herpesvirus type 1 (EHV-1) and equine herpesvirus type 4 (EHV-4) can be associated with respiratory disease, epizootics caused by EHV-1 are much more serious because the virus can cause abortions and paralysis. It is, therefore, important to identify the type of EHV involved in an outbreak by a test that is quick, sensitive, and reliable. We have adapted the polymerase chain reaction (PCR) to detect and distinguish between EHV-1 and EHV-4 in the same reaction. Primers for PCR were designed from the sequences of the glycoprotein B genes of EHV-1 and EHV-4. The PCR products derived from EHV-1 and EHV-4 were 135 and 326 base pairs, respectively, and could be readily separated by electrophoresis. The identity of the PCR products was confirmed by determining their nucleotide sequence, which agreed with the published sequence of the gB genes. The test could be performed directly on virus pelleted from small volumes (300 microL) of medium in which nasal swabs were transported and did not rely on the presence of infectious virus. The PCR was unaffected by conditions that reduced the infectivity of a virus preparation by 99%. The PCR detected EHV-4 in 5 of 10 nasal mucous samples taken from an outbreak of respiratory disease in race horses. Virus isolation in indicator cells was successful in detecting virus in four of the five samples positive by PCR.  相似文献   

6.
The objective of this study was to develop a novel EvaGreen (EG) based real-time PCR technique for the simultaneous detection of Equine herpesvirus 1 (EHV-1) and Equine herpesvirus 4 (EHV-4) genomes from equine nasal swabs. Viral genomes were identified based on their specific melting temperatures (T m), which are 88.0 and 84.4 °C for EHV-1 and EHV-4, respectively. The detection limitation of this method was 50 copies/μl or 0.15 pg/μl for EHV-1 and 5 copies/μl or 2.5 fg/μl for EHV-4. This assay was 50–1,000 times more sensitive than the SYBR Green (SG)-based assay using the same primer pairs and as sensitive as the TaqMan-MGB probe-based assay. The validity of the real-time PCR assays was confirmed by testing 13 clinical samples. When all results of the EG, SG, and TaqMan probe-based singleplex and duplex real-time PCRs were considered together, a total of 84.6 % (11/13) horses and donkeys were positive for at least one virus. EHV-1 and EHV-4 coexisted in 81.8 % (9/11) horses. Overall, we report that the EvaGreen duplex real-time PCR is an economical and alternative diagnostic method for the rapid differentiation of EHV-1 and EHV-4 in nasal swabs.  相似文献   

7.
Cytotoxic T-lymphocytes play an important role in the protection against viral infections, which they detect through the recognition of virus-derived peptides, presented in the context of MHC class I molecules at the surface of the infected cell. The transporter associated with antigen processing (TAP) plays an essential role in MHC class I-restricted antigen presentation, as TAP imports peptides into the ER, where peptide loading of MHC class I molecules takes place. In this study, the UL 49.5 proteins of the varicelloviruses bovine herpesvirus 1 (BHV-1), pseudorabies virus (PRV), and equine herpesvirus 1 and 4 (EHV-1 and EHV-4) are characterized as members of a novel class of viral immune evasion proteins. These UL 49.5 proteins interfere with MHC class I antigen presentation by blocking the supply of antigenic peptides through inhibition of TAP. BHV-1, PRV, and EHV-1 recombinant viruses lacking UL 49.5 no longer interfere with peptide transport. Combined with the observation that the individually expressed UL 49.5 proteins block TAP as well, these data indicate that UL 49.5 is the viral factor that is both necessary and sufficient to abolish TAP function during productive infection by these viruses. The mechanisms through which the UL 49.5 proteins of BHV-1, PRV, EHV-1, and EHV-4 block TAP exhibit surprising diversity. BHV-1 UL 49.5 targets TAP for proteasomal degradation, whereas EHV-1 and EHV-4 UL 49.5 interfere with the binding of ATP to TAP. In contrast, TAP stability and ATP recruitment are not affected by PRV UL 49.5, although it has the capacity to arrest the peptide transporter in a translocation-incompetent state, a property shared with the BHV-1 and EHV-1 UL 49.5. Taken together, these results classify the UL 49.5 gene products of BHV-1, PRV, EHV-1, and EHV-4 as members of a novel family of viral immune evasion proteins, inhibiting TAP through a variety of mechanisms.  相似文献   

8.
Equine herpesvirus type 1 (EHV-1) causes respiratory disorders and abortion in equids while EHV-1 regularly causes equine herpesvirus myeloencephalopathy (EHM), a stroke-like syndrome following endothelial cell infection in horses. Both EHV-1 and EHV-9 infections of non-definitive hosts often result in neuronal infection and high case fatality rates. Hence, EHV-1 and EHV-9 are somewhat unusual herpesviruses and lack strict host specificity, and the true extent of their host ranges have remained unclear. In order to determine the seroprevalence of EHV-1 and EHV-9, a sensitive and specific peptide-based ELISA was developed and applied to 428 sera from captive and wild animals representing 30 species in 12 families and five orders. Members of the Equidae, Rhinocerotidae and Bovidae were serologically positive for EHV-1 and EHV-9. The prevalence of EHV-1 in the sampled wild zebra populations was significantly higher than in zoos suggesting captivity may reduce exposure to EHV-1. Furthermore, the seroprevalence for EHV-1 was significantly higher than for EHV-9 in zebras. In contrast, EHV-9 antibody prevalence was high in captive and wild African rhinoceros species suggesting that they may serve as a reservoir or natural host for EHV-9. Thus, EHV-1 and EHV-9 have a broad host range favoring African herbivores and may have acquired novel natural hosts in ecosystems where wild equids are common and are in close contact with other perissodactyls.  相似文献   

9.
10.
The complexity and structural organization of defective-interfering (DI) particle DNA of equine herpesvirus type 1 (EHV-1) have been elucidated by using restriction enzyme and Southern blot hybridization analyses. DI particles were generated by serial high-multiplicity passage of EHV-1 in L-M cells, and total viral DNA was extracted from virus purified from supernatants of these serial passages. EHV-1 DI particle DNA was quantitatively separated from standard (STD) DNA by several cycles of CsCl isopycnic banding in a vertical rotor. Restriction endonuclease digestion profiles of pure DI DNA were completely different from the mapped patterns observed for EHV-1 STD DNA. Digestion of pure defective DNA with restriction enzymes (Bg/II, EcoRI, and XbaI), for which there are few or no cleavage sites within the S (short) region of the EHV-1 STD genome, yielded high-molecular-weight supermolar DNA bands, suggesting that a large subgenomic repeat unit was present in defective DNA. DNA blot hybridization analysis with the Bg/II supermolar fragment of defective DNA, intact DI particle genomic DNA, and EHV-1 STD DNA restriction enzyme fragments as 32P-labeled probes indicated that the EHV-1 DI particle genome originates predominately from the STD DNA S region (0.77 to 1.00 map units) and to a lesser extent from the left terminus of the unique long (UL) region (0.00 to 0.05 map units). None of the EHV-1 DNA sequences associated to date with EHV-1 oncogenesis (0.32 to 0.38 map units; O'Callaghan et al. in B. Roizman [ed.], Herpesviruses, in press; Robinson et al., Cell 32:204-219, 1983, and Proc. Natl. Acad. Sci., U.S.A., 78:6684-6688, 1981) were detected in the DI particle DNA. The importance of these data with regard to DNA replication of DI particles and the role of DI particles in one model system of EHV-1 oncogenic transformation are discussed.  相似文献   

11.
Equid herpesvirus 1 (EHV-1) can cause a wide spectrum of diseases ranging from inapparent respiratory infection to the induction of abortion and, in extreme cases, neurological disease resulting in paralysis and ultimately death. It has been suggested that distinct strains of EHV-1 that differ in pathogenic capacity circulate in the field. In order to investigate this hypothesis, it was necessary to identify genetic markers that allow subgroups of related strains to be identified. We have determined all of the genetic differences between a neuropathogenic strain (Ab4) and a nonneuropathogenic strain (V592) of EHV-1 and developed PCR/sequencing procedures enabling differentiation of EHV-1 strains circulating in the field. The results indicate the occurrence of several major genetic subgroups of EHV-1 among isolates recovered from outbreaks over the course of 30 years, consistent with the proposal that distinct strains of EHV-1 circulate in the field. Moreover, there is evidence that certain strain groups are geographically restricted, being recovered predominantly from outbreaks occurring in either North America or Europe. Significantly, variation of a single amino acid of the DNA polymerase is strongly associated with neurological versus nonneurological disease outbreaks. Strikingly, this variant amino acid occurs at a highly conserved position for herpesvirus DNA polymerases, suggesting an important functional role.  相似文献   

12.
Glycoprotein D (gD) of equine herpesvirus 1 (EHV-1) was expressed at the surface of insect cells infected by a recombinant baculovirus. EHV-1 gD was detected as multiple forms (56, 52, and 48 kDa) from 18 to 96 h postinfection. Laboratory animals inoculated with the recombinant EHV-1 gD developed neutralizing antibody responses against both EHV-1 and EHV-4.  相似文献   

13.
A line of 3T3 mouse cells lacking deoxythymidine kinase (dTK-) was stably transformed to the dTK+ phenotype after exposure to UV-irradiated equine herpesvirus type 1 (EHV-1). Biochemical transformants were isolated in a system selective for the dTK+ phenotype (Eagle minimal essential medium containing 10(-4) M hypoxanthine, 6 X 10(-7) M aminopterin, and 2 X 10(-5) M deoxythymidine). Transformation was accompanied by the acquisition of a dTK activity with immunological, electrophoretic, and biochemical characteristics identical to those of the dTK induced by EHV-1 during productive infection. The transformed cells have been maintained in selective culture medium for more than 50 passages and have retained the capacity to express EHV-1--specific antigens. Spontaneous release of infectious virus has not been detected in the transformed lines, and the the cells were not oncogenic for athymic nude mice. In contrast to normal dTk+ 3T3 cells, EHV-1 transformants were unable to grow in the presence of arabinosylthymine, a drug selectively phosphorylated by herpesvirus-coded dTK's. These results indicate that a portion of the EHV-1 genome is able to persist in the transformed cells for many generations and be expressed as an enzymatically active viral gene product.  相似文献   

14.
Equine herpesvirus 1 (EHV-1), like other members of the Alphaherpesvirinae subfamily, is a neurotropic virus causing latent infections in the nervous system of the natural host. In the present study, we have investigated EHV-1 replication (wild-type Jan-E strain and Rac-H laboratory strain) during long-term infection and during the passages of the virus in cultured neurons. The studies were performed on primary murine neurons, which are an excellent in vitro model for studying neurotropism and neurovirulence of EHV-1. Using real-time cell growth analysis, we have demonstrated for the first time that primary murine neurons are able to survive long-term EHV-1 infection. Positive results of real-time PCR test indicated a high level of virus DNA in cultured neurons, and during long-term infection, these neurons were still able to transmit the virus to the other cells. We also compared the neurovirulence of Rac-H and Jan-E EHV-1 strains after multiple passages of these strains in neuron cell culture. The results showed that multiple passages of EHV-1 in neurons lead to the inhibition of viral replication as early as in the third passage. Interestingly, the inhibition of the EHV-1 replication occurred exclusively in neurons, because the equine dermal (ED) cells co-cultivated with neuroculture medium from the third passage showed the presence of large amount of viral DNA. In conclusion, our results showed that certain balance between EHV-1 and neurons has been established during in vitro infection allowing neurons to survive long-term infection.  相似文献   

15.
To localize gene that may encode immunogens potentially important for recombinant vaccine design, we have analysed a region of the equine herpesvirus type-1 (EHV-1) genome where a glycoprotein-encoding gene had previously been mapped. The 4707-bp BamHI-EcoRI fragment from the short unique region of the EHV-1 genome was sequenced. This sequence contains three entire open reading frames (ORFs), and portions of two more. ORF1 codes for 161 amino acids (aa), and represents the C terminus of a possible membrane-bound protein. ORF2 (424 aa) and ORF3 (550 aa) are potential glycoprotein-encoding genes; the predicted aa sequences contain possible signal sequences, N-linked glycosylation sites and transmembrane domains; they also show homology to the glycoproteins gI and gE of herpes simplex virus type-1 (HSV-1), and the related proteins of pseudorabies virus and varicella-zoster virus. The predicted aa sequence of ORF4 shares no homology with other known herpesvirus proteins, but the nucleotide sequence shows a high level of homology with the corresponding region of the EHV-4 genome. ORF5 may be related to US9 of HSV-1.  相似文献   

16.
Key problems using viral vectors for vaccination and gene therapy are antivector immunity, low transduction efficiencies, acute toxicity, and limited capacity to package foreign genetic information. It could be demonstrated that animal and human cells were efficiently transduced with equine herpesvirus 1 (EHV-1) reconstituted from viral DNA maintained and manipulated in Escherichia coli. Between 13 and 23% of primary human CD3+, CD4+, CD8+, CD11b+, and CD19+ cells and more than 70% of CD4+ MT4 cells or various human tumor cell lines (MeWo, Huh7, HeLa, 293T, or H1299) could be transduced with one infectious unit of EHV-1 per cell. After intranasal instillation of EHV-1 into mice, efficient transgene expression in lungs was detectable. Successful immunization using EHV-1 was shown after delivery of the human immunodeficiency virus type 1 Pr55gag precursor by the induction of a Gag-specific CD8+ immune response in mice. Because EHV-1 was not neutralized by human sera containing high titers of antibodies directed against human herpesviruses 1 to 5, it is concluded that this animal herpesvirus has enormous potential as a vaccine vector, because it is able to efficiently transduce a variety of animal and human cells, has high DNA packaging capacity, and can conveniently be maintained and manipulated in prokaryotic cells.  相似文献   

17.
The ability of herpes simplex virus types 1 and 2 (HSV-1 and HSV-2, respectively) to repress host cell protein synthesis early in infection has been studied extensively and found to involve the activities of the UL41 gene product, the virion-associated host shutoff (vhs) protein. To date, UL41 homologs have been identified in the genomes of three other alphaherpesviruses: equine herpesvirus 1 (EHV-1), varicella-zoster virus, and pseudorabies virus, but very little is known about the putative products of these homologous genes. Our earlier observations that no rapid early host protein shutoff occurred in EHV-1-infected cells led us to test EHV-1 vhs activity more thoroughly and to examine the expression and function of the EHV-1 UL41 homolog, ORF19. In the present study, the effects of EHV-1 and HSV-1 infections on cellular protein synthesis and mRNA degradation were compared at various multiplicities of infection in several cell types under an actinomycin D block. No virion-associated inhibition of cellular protein synthesis or vhs-induced cellular mRNA degradation was detected in cells infected with any of three EHV-1 strains (Ab4, KyA, and KyD) at multiplicities of infection at which HSV-1 strain F exhibited maximal vhs activity. However, further analyses revealed that (i) the EHV-1 vhs homolog gene, ORF19, was transcribed and translated into a 58-kDa protein in infected cells; (ii) the ORF19 protein was packaged into viral particles in amounts detectable in Western blots (immunoblots) with monoclonal antibodies; (iii) in cotransfection vhs activity assays, transiently-expressed ORF19 protein had intrinsic vhs activity comparable to that of wild-type HSV-1 vhs; and (iv) this intrinsic vhs activity was ablated by in vitro site-directed mutations in which either the functionally inactive HSV-1 vhs1 UL41 mutation (Thr at position 214 replaced by Ile [Thr-214-->Ile]) was recreated within ORF19 or two conserved residues within the putative poly(A) binding region of the ORF19 sequence were altered (Tyr-190, 192-->Phe). From these results we conclude that EHV-1's low vhs activity in infected cells is not a reflection of the ORF19 protein's intrinsic vhs activity but may be due instead to the amount of ORF19 protein associated with viral particles or to modulation of ORF19 protein's intrinsic activity by another viral component(s).  相似文献   

18.
R A Robinson  D J O'Callaghan 《Cell》1983,32(2):569-578
The integration patterns of viral DNA sequences in three hamster embryo cell lines independently derived by transformation with equine herpesvirus type 1 (EHV-1) have been investigated by DNA blot hybridization analyses for the restriction enzymes Eco RI, Bgl II, Xba I and Bam HI with 32P-labeled selected DNAs from a collection of cloned EHV-1 restriction enzyme fragments as probes. These EHV-1-transformed cell lines contained subgenomic portions of the viral genome in an integrated state at multiple sites in the host genome. At least one copy of a viral DNA sequence mapping colinearly from 0.32 to 0.38 map units within the EHV-1 genome was common among these three EHV-1 transformed cell lines. The 0.32–0.38 viral DNA sequence was maintained stably even after 125 cell passages, whereas sequences from other positions in the EHV-1 genome were lost progressively during continued cell passage. The significance of the findings that these oncogenically transformed cell lines harbor a specific region of the EHV-1 genome is discussed with regard to stable maintenance of the oncogenically transformed state.  相似文献   

19.
Major histocompatibility complex class I (MHC-I) molecules are critically important in the host defense against various pathogens through presentation of viral peptides to cytotoxic T lymphocytes (CTLs), a process resulting in the destruction of virus-infected cells. Herpesviruses interfere with CTL-mediated elimination of infected cells by various mechanisms, including inhibition of peptide transport and loading, perturbation of MHC-I trafficking, and rerouting and proteolysis of cell surface MHC-I. In this study, we show that equine herpesvirus type 4 (EHV-4) modulates MHC-I cell surface expression through two different mechanisms. First, EHV-4 can lead to a significant downregulation of MHC-I expression at the cell surface through the product of ORF1, a protein expressed with early kinetics from a gene that is homologous to herpes simplex virus 1 UL56. The EHV-4 UL56 protein reduces cell surface MHC-I as early as 4 h after infection. Second, EHV-4 can interfere with MHC-I antigen presentation, starting at 6 h after infection, by inhibition of the transporter associated with antigen processing (TAP) through its UL49.5 protein. Although pUL49.5 has no immediate effect on overall surface MHC-I levels in infected cells, it blocks the supply of antigenic peptides to the endoplasmic reticulum (ER) and transport of peptide-loaded MHC-I to the cell surface. Taken together, our results show that EHV-4 encodes at least two viral immune evasion proteins: pUL56 reduces MHC-I molecules on the cell surface at early times after infection, and pUL49.5 interferes with MHC-I antigen presentation by blocking peptide transport in the ER.  相似文献   

20.
Interspecies trasmission of equine herpesvirus 1 (EHV-1) from horse to cattle was shown by Crandell et al. (1988). Specific mutations related to the transmission were studied by comparison of five EHV-1 isolates in cattle (BH1247, 3M20-3, G118, G1753, and 9BSV4) using polymerase chain reaction and restriction fragment length polymorphism analysis with added sequencing. G118 and 3M20-3 were the genome type EHV-1 P, while G1753 was the genome type EHV-1 B. BH1247 and 9BSV4 might be other genome types. We could not identify specific mutations related to the interspecies transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号